Oberseminar "Mathematik des Maschinellen Lernens und Angewandte Analysis" - M.Sc. Yara Elshiaty
Multilevel Bregman Proximal Gradient Descent
Datum: | 23.04.2025, 14:15 - 15:15 Uhr |
Kategorie: | Veranstaltung |
Ort: | Hubland Nord, Geb. 40, 01.003 |
Veranstalter: | Institut für Mathematik |
Vortragende: | M.Sc. Yara Elshiaty - Universität Heidelberg |
We present the Multilevel Bregman Proximal Gradient Descent (ML BPGD) method, a novel multilevel optimization framework tailored to constrained convex problems with relative Lipschitz smoothness. Our approach extends the classical multilevel optimization framework (MGOPT) to handle Bregman-based geometries and constrained domains. We provide a rigorous analysis of ML BPGD for multiple coarse levels and establish a global linear convergence rate. We demonstrate the effectiveness of ML BPGD in the context of image reconstruction, providing theoretical guarantees for the well-posedness of the multilevel framework and validating its performance through numerical experiments.