English Intern
  • Studierende im Hörsaal
  • Nahaufnahme Notizen
  • Innenaufnahme der Teilbibliothek Mathematik
Angewandte Stochastik

Abschlussarbeiten

Bachelorarbeiten

Bachelorarbeit

Grundlage einer Bachelorarbeit in der Stochastik ist in der Regel mindestens der Besuch eines Seminares zur Stochastik oder der Vorlesung Stochastik 2. Bei Interesse wenden Sie sich an Prof. Bibinger oder Dozenten der entsprechenden Veranstaltungen.

Die Liste der betreuten Abschlussarbeiten unten gibt eine Übersicht möglicher Themenbereiche, wobei natürlich kein Thema identisch ein zweites Mal vergeben werden kann.

Sie müssen sich nicht selbst ein Thema überlegen. Auf Basis Ihrer Vorkenntnisse und Ihrer Interessen können mögliche Themen bei einem ersten Treffen diskutiert werden.


Hinweise zu Bachelorarbeiten:

 

Masterarbeiten

Masterarbeit

Grundlage einer Masterarbeit sind in der Regel die Vorlesungen Mathematische Statistik (Statistische Analysis), Stochastische Prozesse, Spezialisierungsvorlesungen (AGs) und Seminare. Sie sollten in der Regel mindestens eine der Vorlesungen besucht haben. Bei Interesse wenden Sie sich an Prof. Bibinger oder Dozenten der entsprechenden Veranstaltungen.

Die Liste der betreuten Abschlussarbeiten unten gibt eine Übersicht möglicher Themenbereiche, wobei natürlich kein Thema identisch ein zweites Mal vergeben wird.

Sie müssen das Thema nicht selbst überlegen, können aber gerne eigene Ideen vorschlagen. Auf Basis Ihrer Vorkenntnisse und Ihrer Interessen können mögliche Themen bei einem ersten Treffen diskutiert werden.


Hinweise zu Masterarbeiten:


Formale Hinweise zu Master- und Bachelorarbeiten finden Sie auf der Institutsseite zur Studienorganisation:

Abschlussarbeiten­


Liste von Prof. Bibinger betreuter Abschlussarbeiten

  • Sebastian Rimbach (2024): Das Halbkreisgesetz von Wigner über die asymptotische Verteilung von Eigenwerten zufälliger Matrizen
  • Darius Scheer (2024): Konvergenz von Markovketten
  • Marius Schmück (2024): Zufällige Irrfahrten als Martingale
  • Jannik Reuß (2024): Stabile Verteilungen und eine Verallgemeinerung des zentralen Grenzwertsatzes
  • Lisa Rüppel (2024): Asymptotische Konfidenzintervalle aus Grenzwertsätzen - Vergleich von Studentisierung, varianzstabililisierender Transformation und neuen Lösungsmethoden
  • Felix Weihprecht (2023): Das Invarianzprinzip von Donsker und seine Bedeutung am Beispiel der CUSUM-Statistik
  • Theodor Rafalski (2022): Asymptotik von Summen von Zufallsvariablen und der Satz von Berry-Esseen
  • Daniel Weggenmann (2022): Konvergenz iterativer Sport-Ratings als Markovketten oder weshalb sich Qualität im Sport immer durchsetzt
  • Florian Opel (2021): Der James-Stein-Schätzer

An der Universität Marburg:

  • Nils Staub (2021): Resampling für Portfoliotheorie
  • Kay Korbus (2021): Shrinkage-Schätzer: Das Stein-Phänomen
  • Colin Krag (2020): Eine Analyse von Rekorden in der Leichtathletik mit Extremwerttheorie
  • Nicolai Alexander Lawrenz (2019): Generator und Markov-Eigenschaften von Lévy-Prozessen
  • Frederik Rosenberg (2019): Markov-Prozesse, Markov-Halbgruppen und der Satz von Hille-Yosida 
  • Marvin Theiß (2018): Estimating the roughness of stochastic processes by increment ratios
  • Vincent Ringschmidt (2018): Selbstähnliche Prozesse und Lamperti-Transformation
  • Janosch Schreiber (2018): Lévy-Prozesse und Lévy-Itô-Zerlegung
  • Christoph Roß (2018): Parameterschätzung für die verallgemeinerte Paretoverteilung zur Extremwertinferenz
  • Patrick Bossert (2017): Lévy-Prozesse und Lévy-Khinchin-Formel
  • Claudius Paehr (2017): Schätzung des Hurst-Parameters einer fraktionalen Brownschen Bewegung
  • Tim Burger (2017): Das Bichteler-Dellacherie Theorem in der stochastischen Integration

An der Universität Mannheim:

  • Manuel Schüler (2015): An analysis of forecasting risk in the DAX

  • Berta Bührich (2024): Statistics and Stochastic Calculus of the CEV Price Model
  • Marvin Raab (2024): Extremwertstatistik für die Finanzrisikoanalyse: Peaks over Threshold mit Anpassungstest
  • Daniel Emmerich (2024): Multivariate fraktionale Brownsche Bewegung - Kovarianzstruktur und Vorhersage
  • Heba Alkowaidir (2024): Parameter Estimation for Stable Distributions: Logarithmic Moments Estimation
  • Zhipeng Wang (2024): Portfolio Optimization: High-dimensional estimation and asymptotic theory
  • Adrian Grüber (2024): Schätzung für Semimartingale aus hochfrequenten Beobachtungen mit
    irregulärem Rauschen - Eine Risikoquantifizierung basierend auf Preisen eines Limit-Orderbuchs
  • Lukas Hofbauer (2023): Nichtparametrische Schätzung in Punktprozess- und Regressionsmodellen unter einseitigem Rauschen
  • Johannes May (2022): Steins Identität zweiter Ordnung: SURE für SURE

An der Universität Marburg:

  • Vincent Ringschmidt (2023): Schätzung von Hurstfunktionen multifraktionaler Brownscher Bewegungen aus hochfrequenten Beobachtungen
  • Lukas Teller (2021), mit dem UFZ Leipzig: Perkolationstheorie und die Fragmentierung von Wäldern – Globale Analyse der Abstände zwischen tropischen Wäldern
  • Miriam Sonntag (2020): Schätzung von hochdimensionalen Kovarianzmatrizen mit Thresholding
  • Janosch Schreiber (2020): Optimale Schätzung des charakteristischen Tripels eines Lévy-Prozesses
  • Patrick Bossert (2020): Parameterschätzung für stochastische partielle Differentialgleichungen [PDF]
  • Michael Sonntag (2020): Schätzung des Hurst-Parameters aus diskreten verrauschten Beobachtungen
  • Angelika Geiger (2019): Asymptotische Statistik für Blockmaxima in der Extremwerttheorie
  • Jan Christof Weller (2019): Nichtparametrisches Testen auf Sprünge in hochfrequenten Finanzdaten
  • Andreas Laukart (2019): Nichtparametrische Volatilitätsschätzung mit einseitigen Fehlern
  • Dominik Hecker (2019): Changepoint-Test für die Glattheitsregularität der Volatilität
  • Benedikt Fey (2018): Statistik für Marktmikrostrukturmodelle und Volatilitätsschätzung
  • Peter Nitzge (2018): Der Gumbel-Test auf Preissprünge in Semimartingal-Modellen
  • Christian Liebermann (2018): Shrinkage-Schätzer für hochdimensionale Kovarianzmatrizen
  • Yang Shao (2018): Nonparametric change-point test for volatility jumps
  • Laura Reuter (2017): Semi-parametrische Dichteschätzung Minimaler Hemm-Konzentrationen

An der Universität Marburg:

Kai Malkemus (2020): Das Invarianzprinzip von Donsker.