Teaching
- Turnus: Jedes Sommersemester
- Voraussetzungen: Inhalte der Vorlesungen Analysis 1 und 2 (Bachelor).
- Inhalt: Der kanonische Stoff einer einführenden Vorlesung zur Funktionentheorie: Cauchy-Theorie, Fundamentaleigenschaften holomorpher und meromorpher Funktionen, konforme Abbildungen und der Riemannsche Abbildungssatz, konstruktive Funktionentheorie.
Applications of methods from Complex Analysis to Harmonic Analysis, Operator Theory, Spectral Theory, Banachalgebras and Mathematical Physics, e.g.
- Spectralprojections using Cauchy's Integral Formula
- Von Neumann's Inequality
- Spectral Theorem for unbounded operator
Direct proof based on the Herglotz Formula - Hardy- and Bergman Spaces of holomorphic functions
- Invariant subspaces
Prerequisites: Introductory Course on Complex Analysis (Bachelor's level), a little functional analysis
Selected Courses on Complex Analysis
We regularly offer advanced courses (lectures, seminars, research in groups) at master's level that give an introduction to research topics of intense current interest such as
Constructive methods in Complex Analysis based on the dbar equation and methods of Harmonic Analysis with applications to Potential Theory, Topology, the inverse problem of Galois Theory (Grothendieck's dessins d'enfants) and uniformization of Riemann Surfaces.