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Dissipation of energy and uniqueness

Problem: Let us consider the initial value problem (E) and assume that,
for a given initial datum, a dissipative solution exists.
Is this solution unique in the class of dissipative solutions with the same
initial datum?

I C1 solutions: dissipation of energy implies uniqueness among C1

solutions (straightforward) and among the dissipative weak solutions
with the same initial data [Lions; Brenier, De Lellis and Székelyhidi]

I L∞ solutions: Let e ∈ C([0,T ];R+). Then, there exist initial data
v0 ∈ L∞ having infinitely many weak solutions in C([0,T ]; L2

w) with
total kinetic energy e. In particular, if e is non-increasing, such
solutions are dissipative [De Lellis and Székelyhidi ’10].

Such non-uniqueness initial data for dissipative solutions are called wild
initial data
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Density of wild initial data

Problem: Are such wild initial data a rare phenomenon in L2?

The set of wild initial data v0 ∈ L∞ is dense in L2 [Székelyhidi and
Wiedemann ’11].

Moreover, it includes the vortex sheet [Szekelyhidi ’11].
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Towards a regularity threshold

Definition
Given a divergence free vector field v0 ∈ C0,θ0 (T3), we say that v0 is a
wild initial datum in C0,θ if there exist infinitely many admissible weak
solutions v of (E) satisfying

|v(t , x) − v(t , y)| ≤ C |x − y |θ, ∀ x, y ∈ T3, t ∈ [0,T ].
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Non-uniqueness up to C1/3−ε for admissible weak
solutions

Theorem (D. ’14)
For every ε > 0, there exist vector fields in C0,1/10−ε which are wild initial
data in C0,1/16−ε .
Moreover, they are infinitely many.

Theorem (D., Székelyhidi ’16)
Let θ < 1

5 . Then, there exist vector fields v0 ∈ C0,θ(T3) which are wild
initial data in C0,θ.
Moreover, the set of such initial data is dense in L2(T3).

Theorem (D., Runa, Székelyhidi, In preparation)
Let θ < 1

3 . Then, there exist vector fields v0 ∈ C0,θ(T3) which are wild
initial data in C0,θ.
Moreover, the set of such initial data is dense in L2(T3).
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1/3-scheme (case of no prescribed initial data)

Let e ∈ C∞([0,T ];R+). A strong subsolution of (E) w.r.t. e is
(vq, pq, R̊q) ∈ C∞(T3 × [0,T ];R3 × R × S3×3

0 ) satisfying

(ER)

∂tvq + div(vq ⊗ vq) + ∇pq = divR̊q

divvq = 0

‖vq − vq−1‖C0 ≤ δ1/2
q

‖vq‖C1 ≤ δ1/2
q λq

e(t) −
∫
T3
|vq(t)|2 ∼ δq+1, ∀ t ∈ [0,T ]

‖R̊q‖C0 ∼ δq+1λ
−3α
q ,

for some η small geometric constant, λq = abq
, δq = λ−2θ

q , a >> 1,
1 < b < 1 + ε, q ∈ N, 0 < θ < 1/3.

Remark: If q → ∞, then (vq, pq, R̊q) tends to a C0,θ-solution of the Euler
equations with kinetic energy e.
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Cauchy problem

Aim:
I To show that if some initial data satisfy suitable conditions, they

generate infinitely many admissible weak solutions;
I To show that such wild initial data exist and are infinitely many.

Problem: If the gluing and perturbation stages in the convex integration
scheme are applied uniformly in time, then the solutions so obtained will
be infinitely many, but in general different at time t = 0.

Hence, if we want to use a convex integration scheme leading to
solutions with the same initial datum, we have to start from a concept of
subsolution (adapted subsolution) that at time t = 0 is already a solution
with energy e(0) and then apply perturbations that at time t = 0 must all
be null. This will answer the first point above.

In order to show that such adapted subsolutions exist and are infinitely
many, we perform another convex integration scheme starting from
classical (strong) subsolutions adding perturbations which are each
nonzero in smaller and smaller neighborhoods of t = 0.

Sara Daneri
Non-uniqueness for the incompressible Euler equations up to Onsager’s critical exponent



Cauchy problem

Aim:
I To show that if some initial data satisfy suitable conditions, they

generate infinitely many admissible weak solutions;
I To show that such wild initial data exist and are infinitely many.

Problem: If the gluing and perturbation stages in the convex integration
scheme are applied uniformly in time, then the solutions so obtained will
be infinitely many, but in general different at time t = 0.

Hence, if we want to use a convex integration scheme leading to
solutions with the same initial datum, we have to start from a concept of
subsolution (adapted subsolution) that at time t = 0 is already a solution
with energy e(0) and then apply perturbations that at time t = 0 must all
be null. This will answer the first point above.

In order to show that such adapted subsolutions exist and are infinitely
many, we perform another convex integration scheme starting from
classical (strong) subsolutions adding perturbations which are each
nonzero in smaller and smaller neighborhoods of t = 0.

Sara Daneri
Non-uniqueness for the incompressible Euler equations up to Onsager’s critical exponent



Cauchy problem

Aim:
I To show that if some initial data satisfy suitable conditions, they

generate infinitely many admissible weak solutions;
I To show that such wild initial data exist and are infinitely many.

Problem: If the gluing and perturbation stages in the convex integration
scheme are applied uniformly in time, then the solutions so obtained will
be infinitely many, but in general different at time t = 0.

Hence, if we want to use a convex integration scheme leading to
solutions with the same initial datum, we have to start from a concept of
subsolution (adapted subsolution) that at time t = 0 is already a solution
with energy e(0) and then apply perturbations that at time t = 0 must all
be null. This will answer the first point above.

In order to show that such adapted subsolutions exist and are infinitely
many, we perform another convex integration scheme starting from
classical (strong) subsolutions adding perturbations which are each
nonzero in smaller and smaller neighborhoods of t = 0.

Sara Daneri
Non-uniqueness for the incompressible Euler equations up to Onsager’s critical exponent



Cauchy problem

Aim:
I To show that if some initial data satisfy suitable conditions, they

generate infinitely many admissible weak solutions;
I To show that such wild initial data exist and are infinitely many.

Problem: If the gluing and perturbation stages in the convex integration
scheme are applied uniformly in time, then the solutions so obtained will
be infinitely many, but in general different at time t = 0.

Hence, if we want to use a convex integration scheme leading to
solutions with the same initial datum, we have to start from a concept of
subsolution (adapted subsolution) that at time t = 0 is already a solution
with energy e(0) and then apply perturbations that at time t = 0 must all
be null. This will answer the first point above.

In order to show that such adapted subsolutions exist and are infinitely
many, we perform another convex integration scheme starting from
classical (strong) subsolutions adding perturbations which are each
nonzero in smaller and smaller neighborhoods of t = 0.

Sara Daneri
Non-uniqueness for the incompressible Euler equations up to Onsager’s critical exponent



From subsolutions to adapted subsolutions

Start from (v0, p0, R̊0) classical (strong) subsolution.

vq+1 ∼ (1 − ψq+1)vq + ψq+1(v̄q + wq+1)

with ψq+1 ∈ C∞c ([0,T ]; [0, 1]) cut-off in time,

ψq+1 =

1 on [0, 2−qT ]

0 on [2−(q−1)T ,T ].
(1)

Since suppψq+2 ⊂ {ψq+1 = 1}, for the next step I can start with the
uniform estimates of the 1/3-scheme for dissipative solutions.
One has to show that on the remaining regions (not further modified)
where ψq+1 ∈ (0, 1) one has a control on the norms growth, in particular
that appearance of derivatives of the cut-off functions in the estimates for
the Reynolds stress does not cause any problem.

In the end, the sequence converges to (v , p, R̊) adapted subsolution
defined by the following properties
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Adapted subsolutions

Define ρ = e −
∫
|v |2.

An adapted subsolution is (v , p, R̊) ∈ C∞((0,T ]) ∩ C0([0,T ]) solving
(ER) on (0,T ] with ∫

T3
|v0|

2 = e(0), R̊(0) ≡ 0

and the following (non-uniform) estimates

‖R̊‖0 ≤ ρ1+ε

‖v‖1 ≤ ρ−1−ε

|∂tρ| ≤ ρ
−ε
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From adapted subsolutions to solutions

One has to deal with spatial estimates which are non-uniform in time.

Idea: localize the estimates (with the aid of cut-off functions in time) to
regions where the energy gap ρ is bounded from below⇒ uniform bound
from above for the C1-norms as in the 1/3-scheme.
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Density of wild initial data

Let v0 ∈ L2. Let v̄ ∈ C∞ s.t. ‖v0 − v̄‖2 ≤ ε and let (v , p, R̊) a mollification
of a solution of the Navier-Stokes equations with initial datum v̄.

Can we start the convex integration scheme directly from (v , p, R̊)?

The answer is in general negative, since in the iterations we should be
able to estimate the norm of the Reynolds stress with the energy gap.

In order to reduce to a subsolution with such a bound, we needed to
introduce (in collaboration with Székelyhidi) the class of Mikado flows,
which allow to “absorb” the error given by any positive definite matrix

R =
1
3

(
e(t) −

∫
|v |2

)
Id − R̊

.
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Open problems

I What about well-posedness between C0,1/3 and C1?

I Are there selection criteria other than admissibility which allow to
regain uniqueness?
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