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Compressible Euler equations

Jro +div(pv) =0

It(ov) +div(ovev)+Vp=0
&(%glle + oe(o, p)) + div [(%QIVIZ +oe(o, p) + p)V] =0

Unknowns:
@ density 0 : [0, Tmax) X 2 — RT
o velocity v : [0, Tmax) X Q — R”
@ pressure p: [0, Tmax) X 2 — RT

Variables:
e time t € [0, Trax)

@ spatial variable x = (x1,...,x,) € Q
Q C R" bounded, n =2,3

The internal energy

e =e(p,p) is a given
function.

Example (ldeal gas)

__1 p
where v > 1
(adiabatic exponent)




Initial boundary value problem

Initial condition:

Impermeability boundary condition:

V-njpo =0



Conservation Laws

The Euler equations are a system of conservation laws:

OV + divF(V) =0

with
) ov'
V = ov , F= ov®v+pl,
Lolv? + oe(o, p) (3olv]>+ 0e(o, p) + p)vT

@ We have to consider weak solutions.

@ We need an admissibility criterion to select
physically relevant solutions.



Weak solutions

Consider
OtV +divF(V) =0

with V1 [0, Thax) X Q@ = R™, F: R™ — R™*",
Claim: A classical solution fulfills the integral identity
Tmax
/ /V-atcp—i-F(V):Vnpdxdt—l—/V0~go(0,-)dx:0
0 Q Q

for all test functions ¢ € C2°([0, Tmax) x R"; R™).



Weak solutions

Consider
OtV +divF(V) =0

with V1 [0, Thax) X Q@ = R™, F: R™ — R™*",

Claim: A classical solution fulfills the integral identity

Tmax
/ /V-atcp—i-F(V):Vnpdxdt—l—/V0~go(0,-)dx:0
0 Q Q

for all test functions ¢ € C2°([0, Tmax) x R"; R™).

Proof: Multiply the PDE with ¢, integrate and apply integration
by parts. The support of ¢ is determined by the boundary
condition!



Weak solutions

Consider
OtV +divF(V) =0

with V1 [0, Thax) X Q@ = R™, F: R™ — R™*",

Definition: Weak solution

A weak solution is a function V € L*°([0, Tmax) X ©; R™) such that

Tmax
/ /V-&tcp—i-F(V):chdxdt+/vo~cp(0,-)dx:0
0 Q Q

is fulfilled for all test functions ¢ € C2°([0, Tmax) x R™; R™).




Weak solutions to the Euler equations, 1

A weak solution is a triple of functions
(0,v,p) € L([0, Trmax) x ; RT x R" x RT) such that

Tmax
/ /(QE)ﬂ/H—Qde)) dx dt+/go¢(0,-) dx =
0 Q Q
Tmax
/ /(gv-8t<p+gv®v:V<p+pdivgo)dxdt
0 Q
+/QQOV0"P(07') dx =

for all test functions (¢, ) € C2°([0, Tmax) X R", R x R") with
¢ -nlog =0,



Weak solutions to the Euler equations, 2

A weak solution is a triple of functions
(0,v,p) € L([0, Trmax) x ; RT x R" x RT) such that

/OTmax/Q <<§Q|v|2 + oel(o, p)> Or

+(%9!V!2 +oe(o,p) + p)v - Vqﬁ) dx dt
+/Q(égoIVo\z+@oe(go,po))¢>(o,-) dx = 0

for all test functions ¢ € C2°([0, Tmax) x R",R).



Admissibility criterion

Consider
OtV +divF(V) =0

with V 2 [0, Tmax) X Q — R™, F: R™ — RmXn,

Definition: Entropy - entropy flux - pair

A pair of functions (1,%) : R™ — R x R", V — (n(V),9(V)) is
called entropy - entropy flux - pair if

@ 7 is a convex function and
® Ovhj =D k1 Ovin - OviFig.

Claim: Classical solutions fulfill 9;n(V) + dive(V) = 0.

Proof:



Admissibility criterion

Consider
OtV +divF(V) =0

with V 2 [0, Tmax) X Q — R™, F: R™ — RmXn,

Definition: Entropy - entropy flux - pair

A pair of functions (1,%) : R™ — R x R", V — (n(V),9(V)) is
called entropy - entropy flux - pair if

@ 7 is a convex function and
© dvihj = >k Ov,n - O, Fig.

Claim: Classical solutions fulfill 9;n(V) + divy(V) =

Proof:
On(V) + 0x1j(V) = Oy, n - 0t Vi + Ov9)j - Ox, Vi

= 0v,n - 0tV + Oy, n - Oy, Fij - Ox Vi
= 8Vk77 . <8th + anij) =0



Admissibility criterion

Consider
OtV +divF(V) =0
with V : [0, Thax) X 2 — R™, F: R™ — R™*"

Definition: Entropy - entropy flux - pair

A pair of functions (1,%) : R™ — R x R", V — (n(V),9(V)) is
called entropy - entropy flux - pair if

@ 7 is a convex function and
® Ovhj =D k1 Ovin - OviFig.

Definition: Admissible solution (or entropy solution)

A weak solution is called admissible (or entropy solution) if
den(V) + divep(V) < 0

holds in the weak sense for all entropy - entropy flux - pairs (1, 4).




Entropy solutions to the Euler equations

For the Euler equations

n=-o0s(o,p) Y =—-0s(o,p)v

is an entropy - entropy flux - pair.

Ideal gas

s(o,p) = 27 logp — 25 log o

A weak solution is admissible if

/Ormax/ﬂ(gs(Q,P)atsoJrgs(Q,p)v,v(p) dx di
+/Q (QO 5(907130))90(0, Jdx < 0

for all test functions ¢ € C2°([0, Tmax) x R", [0, 00)).




Isentropic Euler equations

Oro +div(pv) =0
9t(ov) +div(ev®v) + Vp(e) =0

Unknowns: The pressure p = p(p)
@ density ¢ : [0, Tmax) X Q — RT and the pressure
potential P = P(p) are

@ velocity v : [0, Thax) X Q2 — R” ) ]
given functions.

Variables:

Example

o time t € [0, Trmax) (Polytropic pressure law)

@ spatial variable x = (xy,...,x,) € Q o(o) — g7, Plo) — Lo
Q C R" bounded, n = 2,3 (0) (0) = 74

where v > 1

Entropy (energy) inequality:

0r(3elv? + P(0)) +div [ (Yelv> + P(0) + p(0) )¥] < 0
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Results for the isentropic Euler equations

Theorem

Consider the isentropic Euler equations with an arbitrary pressure
function p(o). There exist initial data (o, vo) for which there are
infinitely many admissible weak solutions (o, v).

C. De Lellis and L. Székelyhidi Jr. “On admissibility criteria for weak solutions of the
Euler equations”. In: Arch. Ration. Mech. Anal. 195.1 (2010), pp. 225-260

Theorem

Consider the isentropic Euler equations with an arbitrary pressure
function p(p). For any given periodic initial density oo € C! there
exist a periodic initial momentum mg € L*° and a positive time
Tmax for which there are infinitely many space-periodic admissible
weak solutions (0, m) on [0, Tmax) X R".

E. Chiodaroli. “A counterexample to well-posedness of entropy solutions to the
compressible Euler system”. In: J. Hyperbolic Differ. Equ. 11.3 (2014), pp. 493-519




Results for the full Euler equations

Theorem

For any given piecewise-constant initial density oo and pressure pg
there exists an initial velocity vg € L for which there are infinitely
many admissible weak solutions (o,v, p) on [0, Tmax) X Q.

O. Kreml E. Feireisl C. Klingenberg and S. Markfelder. “On oscillatory solutions to
the complete Euler system”. In: submitted (2017). arXiv: 1710. 10918

Theorem (the one we are going to prove)

For any given constant initial density oy and pressure py there
exists an initial velocity vo € L™ for which there are infinitely
many admissible weak solutions (o, v, p) on [0, Tmax) X Q.



https://arxiv.org/abs/1710.10918
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Basic idea

De Lellis and Székelyhidi showed existence of infinitely many
solutions (v, p) to the incompressible Euler equations
divv =0,
Ov +divivev) + Vp =0,
where one can achieve p = const and prescribe the kinetic energy
lv(t,x)|? = &(t,x) for a. e. (t,x).

C. De Lellis and L. Székelyhidi Jr. “The Euler equations as a differential inclusion”.
In: Ann. of Math. (2) 170.3 (2009), pp. 1417-1436

C. De Lellis and L. Székelyhidi Jr. “On admissibility criteria for weak solutions of the
Euler equations”. In: Arch. Ration. Mech. Anal. 195.1 (2010), pp. 225-260

For the compressible Euler equations set ¢ = const, € = const and
use their result.




Proposition 1

Let Q C R" (n=2,3) open and bounded, 0 < T < oo and r > 0,
¢ > 0 positive constants. Then there exists mg, my € L>(£; R")
such that the problem

divm =20

1 2
atm+div<"‘®m—‘": H,,> —0

r n
m(0,-) = myg

m(T,)=mr

| Im|?
r

has infinitely many weak solutions that fulfil = c for a. e.

(t,x) € [0, T] x Q.



Proposition 1
Let Q C R" (n=2,3) open and bounded, 0 < T < oo and r > 0,

¢ > 0 positive constants. Then there exists mg, my € L>(£; R")
such that there are infinitely many

m ¢ Loo((ov T) X Q;Rn) N Cweak([07 T]v Lz(Qan))

;
/ /m-dexdt—O
0 Q
T 1 2
/ / [m.at<p+(m®m—’m’ H,,> :ch] dx dt
0 Q

r n r
—l—/mo-go(O,-) dx—/mT-go(T,-) dx = 0
Q Q

for all test functions (v, ) € C°([0, T] x R",R x R") and

with

2
|":|:c fora. e. (t,x) €[0, T] x Q.



Proof of the theorem



Proposition 17
Let Q C R" (n=2,3) open and bounded, 0 < T < oo and r > 0,

¢ > 0 positive constants. Then there exists mg, my € L>(£; R")
such that there are infinitely many

m ¢ Loo((ov T) X Q;Rn) N Cweak([07 T], Lz(Qan))

;
/ /m-dexdt—O
0 Q
T 1 2
/ / [m.at<p+<m®m—’m’ H,,> :ch] dx dt
0 Q

r n r
—l—/mo-go(O,-) dx—/mT-go(T,-) dx = 0
Q Q

for all test functions (v, ) € C°([0, T] x R",R x R") and

with

jm/?
=c forallt€[0,T]and a. e. x € Q.

r



Outline
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Basic ideas of the convex integration method

divm =20

dem + div ('"®"' — lﬁﬂn) —0

r n r



Basic ideas of the convex integration method

divm =20
Orm + div ("‘®"‘ — %@H,& =0

© Rewrite the system as a linear one with a non-linear constraint
by introducing the new unknown U € Sj:

divm =0,
om +divU =0,

with the non-linear constraint (m, U) € Z where
Z:= {(m, U): [0, T] x Q = R" x 8§ | (m(t,x), U(t,x)) € K
for almost all (t,x) € [0, T] x ]R”},

K;:{( V) ERT <SP U= m®m—g]1n}.



Basic ideas of the convex integration method

@ Relax the constraint: Z s Z, with
7= {(m, U): [0, T] x Q = R" x 8§ | (m(t,x), U(t,x)) € (K©)°
for almost all (t,x) € [0, T] x R”}.

Weak solutions to the linearized system are called
subsolutions if they fulfill the relaxed constraint.
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7= {(m, U): [0, T] x Q = R" x 8§ | (m(t,x), U(t,x)) € (K©)°
for almost all (t,x) € [0, T] x R”}.
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© Find a subsolution (m, U).



Basic ideas of the convex integration method

@ Relax the constraint: Z — 2 with

Z = {(m, U): [0, T] x Q = R” x 8¢ | (m(t,x), U(t,x)) € (K©)°
for almost all (t,x) € [0, T] x R”}.

Weak solutions to the linearized system are called
subsolutions if they fulfill the relaxed constraint.

© Find a subsolution (m, U).

Constructive approach

@ Construct a sequence of
subsolutions (mg, Uy)«
(where (mg, Up) = (m, U))
converging to a solution

(m, V).



Basic ideas of the convex integration method

@ Relax the constraint: Z s Z, with
7= {(m, U): [0, T] x Q = R" x 8§ | (m(t,x), U(t,x)) € (K©)°
for almost all (t,x) € [0, T] x R”}.

Weak solutions to the linearized system are called
subsolutions if they fulfill the relaxed constraint.

© Find a subsolution (m, U).

Constructive approach Baire category approach
@ Construct a sequence of @ Prove - by using Baire
subsolutions (mg, Uy)« category arguments - that if
(where (mg, Up) = (m, U)) a subsolution exists then
converging to a solution there are infinitely many

(m, V). solutions.



Geometric setup

Define

e:R"x S SR, e(m,U)= max<m®m—u>
U : {(m, U) € R" x 57 | e(m, g}
K= I

<
{(m, U)eR” x S§|mem _y—

'}

Properties:

o IME < o(m, U) for all (m, U) € R" x 8¢
o M — ¢(m, U) & U= mem _ Imy

rn-n
@ e is a convex function

° |Ules < (n—1)e(m,U) for all (m, U) € R" x Sf

o U = (K)°, where K denotes the convex hull of K.



Proposition 2

Assume there exists a smooth solution (m, U) of the system

with the following properties
M € Cueak([0, T]; L2(R™; R™))
supp (m(t,-), U(t,")) cQ forall t€ (0, T)
e(m,U) << forall (t,x) € (0,T) x Q.
Then there exist infinitely many solutions m as in Proposition 1
such that
m(t7 ) - m(tv )
t 2
]m(r,x)] = c for almost every (t,x) € (0, T) x Q

fort=0,T



Proof of Proposition 1



Proof of Proposition 2

Define the set
Xo = {m € C((0, T) x R"R") N Cueak([0, T]; L2(R"; R"))
conditions C1,C2,C3 hold}.

Cl divm=0

C2 m(t,)=m(t,) fort=0,T
suppm(t,-) CQ forallt€ (0, 7)

C3 there exists U € C*>((0, T) x R"; Sf) with
o supp U(t,-)CQ forallte€(0,T)
o e(m(t,x),U(t,x)) < £ forall (t,x) €(0,T) xQ

o dm+divU=0 in(0,T)xQ.



Proof of Proposition 2

Define the set
Xo = {m € C((0, T) x R"R") N Cueak([0, T]; L2(R"; R"))
conditions C1,C2,C3 hold}.

Cl divm=0

C2 m(t,)=m(t,) fort=0,T
suppm(t,-) CQ forallt€ (0, 7)

C3 there exists U € C*>((0, T) x R"; Sf) with
o supp U(t,-)CQ forallte€(0,T)
o (m(t,x),U(t,x)) el for all ( x)€(0,T)xQ
o dm+divU=0 in(0,T)x Q.



Proof of Proposition 2
Let m € Xy. Then

Im(t, )% = /|m X)|? dx

< nr/ e(m(t,x), U(t,x)) dx
Q
<crl|Q| forall t € (0, T)
[[m(t, ‘)||%2 = |[m(t, ')|Ifz fort=0,T.

> m: [0, T] — L2 takes values in a bounded subset B C L.



Proof of Proposition 2

Let m € Xy. Then
> m: [0, T] — L2 takes values in a bounded subset B C L.

> W.l.o.g. assume that B is closed in the weak topology of L2
(otherwise consider the weak closure of B).

> The weak topology on B is metrizable (denote this metric by
dg) and (B, dg) is a compact metric space (Alaoglu’s
theorem).

> Hence (B, dg) is a complete metric space.
> Define the metric d on C([0, T]; (B, dg)) by
d(ml, m2) = max dB(ml(t, ~), mz(t, ))
te[0,T]
> Then (C([0, T]; (B, dg)), d) is a complete metric space, too.
> Let X be the closure of Xy w. r. t. the metric d.

> Then (X, d) is a complete metric space.



Proof of Proposition 2

|m|?

Let m € X such that =~ = c for a. e. (t,x) € (0, T) x Q then m
is a solution as in Proposition 2.

Proof-:



Baire category theory

@ Let (M, T) be a topological space. A subset A C M is called
e nowhere dense if the interior of the closure of A is empty:

(A)° =2,

o meager (or of first category) if A is the countable union of
nowhere dense sets,
e residual if the complement of A is meager.
e Baire category theorem: If (M, d) is a complete metric space,
then every residual subset of M is dense.

o Let (M1, T) a topological and (M, d) a metric space. A
function f : M; — M> is called Baire-1-function if it is the
pointwise limit of a sequence of continuous functions.

e Let (My,T) a topological and (Ma, || - ||) @ normed space and
consider a Baire-1-function f : M; — M>. Then the set
C C Mj of the points in which f is continuous is residual in
M.



Proof of Proposition 2

Plan of the proof:

> Because of the lemma, each m € Y is a solution, where
Im?
Y = mEX‘—:cfora.e. (t,x) € (0, T) x Q7.
r

> Show that the identity map / : (X, d) = (L%, - [/;2), m+—m
is a Baire-1-function.

> The set C := {m e X ’l is continuous in m} is residual in X.
> Show that C C Y.

> Since (X, d) is a complete metric space, C is dense (Baire
category theorem). Hence Y is dense.

> Show that X is infinite. Then Y is infinite, too.



Proof of Proposition 2

Claim: /: (X,d) — (L?,] - |;2), m — m is a Baire-1-function.



Proof of Proposition 2

Claim: /: (X,d) — (L?,] - |;2), m — m is a Baire-1-function.

Let /s : (X, d) — (L2,]| - [|12) defined by m — ®s « m with a
space-time mollifier ®5. One can show that

e my % m implies  ®5xmy — ®5%min L2,

e dsxm—m in L% ford — 0.

Hence the functions /s are continuous and converge pointwise to /
as 0 — 0.



Proof of Proposition 2
Claim: CCY.

{mEX‘| = ¢ for a.e. (t,x)E(O,T)xQ}

={meX ‘ | is continuous in m}



Proof of Proposition 2
Claim: CCY.

m|?
Y = meX‘f:cfora.e. (t,x) € (0, T) x Q
C:={

me X ‘ | is continuous in m}

Oscillatory Lemma

For all compact sets I' C (0, T) x Q there exists a constant 8 > 0
with the following property. For any given m € X there exists a
sequence (Mg )xen C Xo such that

d
mg—m

2
il 2 I+ 8 (¢~ i)




Proof of Proposition 2

Claim: X is infinite.



Proof of Proposition 2

Claim: X is infinite.

> Since m € Xy, Xp # O.
> From the oscillatory lemma we can deduce that Xj is infinite.

> Hence X is infinite.
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Oscillatory lemma

Lemma

For all compact sets I C (0, T) x Q there exists a constant 3 > 0
with the following property. For any given m € Xy there exists a
sequence (My)ken C Xo such that

d
my—m

2
I|km|anmk||L2(r > Hm” r)+,6’<cr|r\ HmeQ(r)) .




Proof of the Oscillatory lemma, Step 1

Define

n(n+3).

n
* o= dim(R" x 8) +1 = 141 =
n dim(R" x §g) + n—|—Z/ + 5

i=1

Fix an arbitrary point (tp,xo) € I'. For convenience we define
(m*, U*) = (m(to,XO), U(to,Xo)).

By assumption it holds that (m*, U*) € U.



Proof of the Oscillatory lemma, Step 1

Claim: 3 a segment oy, x, = [—p, p| C R" x &f such that:

Q@ Ja,beR"with |[a] =|b|=+/rcand a# +b, and A >0
such that

p=Al@=3) - (b.22)].

Q@ (m*,U*) +ogyx CU.

© Ve > 03 a pair (Mg, Upxo) € C((—1,1) x B1(0)) s. t.
e div My xg = 0 8tmt07X0 + div Ut07X0 =0

dist (Mg % (t, X), Ugg xo (£, X)), Ot0.%0) < €
for all (t,x) € (~1,1) x By(0)

/R/Rn |mey o (t,%)] dx dt > ¢ (rc _ (m(to,xo)\z)

for a suitable constant ¢; > 0

° My, x, (t,x) dx = 0.
RI‘I



Proof of the Oscillatory lemma, Step 1

Claim: 3 a segment oy, x, = [—p, p| C R" x &f such that:
Q@ Ja,beR"with |[a] =|b|=+/rcand a# +b, and A >0

such that
p=2[(a.222) - (b.%5)].

Proof:
> We have that (m*, U*) € U = (K°)°.

> 3 finitely many (m;, U;) € K such that (m*, U*) lies in the
interior of the convex polytope spanned by the (m;, U;).

> Since (m*, U*) lies in the interior, it is possible to slightly
change the (m;, U;) to obtain m; # 4+m; for all i # ;.

> By Caratheodory’s theorem, there are at most n* points
among the (m;, U;) and «; > 0 such that

(m*, U") = iai (m;, Uj), ia; =1.
i=1 i=1



Proof of the Oscillatory lemma, Step 1

Claim: 3 a segment oy, x, = [—p, p| C R" x &f such that:

Q@ Ja,beR"with |[a] =|b|=+/rcand a# +b, and A >0
such that

Proof:

> By Caratheodory’s theorem, there are at most n* points
among the (m;, U;) and «; > 0 such that

n*
m U a, m,, ,'), a,':]..
i=1

> Since (m*, U*) ¢ K, there are at least two indices i with
a;j > 0. W.l.o.g. the coefficients are ordered such that
1 = Maxq;.
1

> Let j be such that aj [m; — my| = maxa; |[m; — my]|.
!



Proof of the Oscillatory lemma, Step 1

Claim: 3 a segment oy, x, = [—p, p| C R" x &f such that:
Q@ Ja,beR"with |[a] =|b|=+/rcand a# +b, and A >0
such that

p=A[(a.222) — (b,22)]

r

Proof:
> Let j be such that aj [mj — m;| = maxa; |m; — my]|.
1

> Set a=m;, b = m;. Note that j # 1 and hence a # +b.

> We obtain that |a| = |b| = \/r ¢ because (m;, U;) € K and
therefore |m;|? = tr(m; @ m;) = r tr(< 1, + U;) = r ¢ (for all
ie{l,...,n*}).

> We set A= 3 aj and p=A[(a, 222) — (b, 222)]. Then
p € R" x Sy since 2(a®a — b ®b) is symmetric and

r

tr (22— 258)) = 2 (jaf? — b/2) = 0.




Proof of the Oscillatory lemma, Step 1
Q@ (m*,U*) + 04 x, CU.

Proof-:



Proof of the Oscillatory lemma, Step 1

Additionally the following estimates hold:



Proof of the Oscillatory lemma, Step 1

Additionally the following estimates hold:
Since o [m; —my| = max o |m; — my|, we get that

n*
i m; — E Qpmy
E CV/ _ml
< E a; |m; —my|
i=1

< n* o \mj — ml\.

jm* —my| =




Proof of the Oscillatory lemma, Step 1

Additionally the following estimates hold:
Since o [m; —my| = max o |m; — my|, we get that
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Proof of the Oscillatory lemma, Step 1

Additionally the following estimates hold:
Since o [m; —my| = max o |m; — my|, we get that

]m* — m1| S n* Qj |mj — ml\.
Hence:

1 1
)\|a—b\:§aj|mj—m1\>f n—|m

> (jm] — ) > 5
_ 1 o *12
= G e e Im),

where we used that [m*|?2 < rne(m*, U*) < rc.

L (vre— ) Y EE M



Proof of the Oscillatory lemma, Step 1

@ Ve > 03 a pair (Mg, Upxo) € C((—1,1) x B1(0)) s. t.

e div mto’XO =0 8tmt0,xo + div Ut07X0 =0
o dist ((mt0 xo (%), Ugy xo (£, X)), 0t0.%0) < €
for all (t,x) € (—1,1) x B1(0)

2
/ / |mt07X0 ‘ dx dt > ¢ (rc — ’m(to,xo)‘ )
for a suitable constant ¢; > 0

o My, x,(t,x) dx = 0.
RN



Proof of the Oscillatory lemma, Step 1

Lemma (De Lellis, Székelyhidi)

There exist linear differential operators of order 3

A: CP(R™LR) —» CO(R"; R™)
B: C(R™!:R) — C°(R™; S5)

s. t. forall ® € C°(R"L; R)
div(A®) =0,  9:(Ad) + div(BP) = 0.

Furthermore there exists a vector n € R™1 such that for all
¢ € C(R;R)

A® = (a—b)¢"((x, 1) -n)
Bb=1(a@a—bab)¢"((x ) n)

where ®(t,x) := ¢((x,t) - n).




Proof of the Oscillatory lemma, Step 1

> Let p € C2°((—1,1) x B1(0),[—1,1]) be a cutoff function
which is identically 1 inside (—1, %) X By /2(0).

> Let W € C®(R,R) be defined by W(y) := —AN=3 sin(N y)
where N > 0 is a large number to be chosen later.

> Define



Proof of the Oscillatory lemma, Step 1

Claim: For all (t,x) € (—1,1) x B1(0)

dist ((mto’xO(t, X), Uto,xo(ta X)), Uto,Xo) < €.

(M, U) = ((a—b),(a@a—b®b)) ¥ ((x,t)-n)
= ((a—b),(a®@a—b®b)) A cos (N (x,t) n)
=p cos (N (x,t) 1) € Tryx-

It is not difficult to check that

PR 1
H(mthov Uto,Xo) - (m7 U)HOO < N

where ¢g > 0 is a suitable constant. We can choose N large such
that ¢ % <E.



Oscillatory lemma

Lemma

For all compact sets I C (0, T) x Q there exists a constant 3 > 0
with the following property. For any given m € Xy there exists a
sequence (My)ken C Xo such that

d
my—m

2
I|km|anmk||L2(r > Hm” r)+,6’<cr|r\ HmeQ(r)) .




Proof of the Oscillatory lemma, Step 1

Define

n(n+3).

n
* o= dim(R" x 8) +1 = 141 =
n dim(R" x S§g) + n—|—Z/ + 5

i=1

Fix an arbitrary point (tp,xo) € I'. For convenience we define
(m*, U*) = (m(to,XO), U(to,Xo)).

By assumption it holds that (m*, U*) € U.



Proof of the Oscillatory lemma, Step 1

Claim: 3 a segment oy, x, = [—p, p| C R" x Sf such that:

Q@ Ja,beR"with |[a] =|b|=+/rcand a# +b, and A >0
such that

p=Al@=3) - (b.22)].

Q@ (m*,U*) +ogyx CU.

© Ve > 03 a pair (Mg, Upxo) € C((—1,1) x B1(0)) s. t.
e div My xg = 0 8tmt07X0 + div Ut07X0 =0

dist ((Myg,x (£, X), Ugg xo (£, X)), Ot0.%0) < €
for all (t,x) € (~1,1) x By(0)

/R/Rn |mey o (t,%)] dx dt > ¢ (rc _ (m(to,xo)\z)

for a suitable constant ¢; > 0

° My, x, (t,x) dx = 0.
RI‘I



Proof of the Oscillatory lemma, Step 2

@ Since (m, U) is uniformly continuous, there exists d; > 0's. t.
(m(t7 X), U(t7 X)) + UtO:XO C Z/[

for all (t,x), (to,xo) € [ with |t — to| < 61 and |x — x¢| < d5.

@ Step 1 yields a pair (My, x,, U x,) € C((—1,1) x B1(0))
that fulfills

dist ((mto,xo(t,x), Uty xo (£, X)), Jto,xo) <e

for all (t,x) € (—1,1) x By(0).

@ Define

t— 1ty X— Xp
(mto,xoﬁv Uto,xoﬁ)(tvx) = (mto7xov Uto,Xo)( 5 ' ¢ >7

then supp (My, xo.6, Uty x0,6) C (to — 3, to + &) x Bs(xo).



Proof of the Oscillatory lemma, Step 2

o Additionally we get that

dist ((mto Xo,5( x), Uty .0 (t, X))70-thXO> <eg

for all (t,x) € (to — 9, to + 0) x Bs(xo).
@ Because U is open, we can choose ¢ so small that

(m(t,x), U(t,x)) + (Mg x0,5(t, %), Ugy x0,5(t, X)) €U

for all (t,x) € (to — 9, to + &) x Bs(xo).
@ We obtain from step 1 that

//\mto,xo, x)| dx dt—(s"“/ / |mey o (t,x)| dx dt
r Bi(0

> 5l g (rc — ‘m to,Xo)‘Z).



Proof of the Oscillatory lemma, Final step

There exists a radius d» > 0 and a constant ¢ > 0 such that for
all 0 < 6 < d there are finitely many points (tj,x;) € ' with the
following properties:

@ The sets (tj — 6, t;j + &) x Bs(x;) are contained in I and
pairwise disjoint.

@ The inequality

gntl Z (rc — }m(tj,xj)f)

>0 J//r (rc— ‘m(t,x)f) dx dt
=0 <rc||‘| —//r\m(t,x)]2 dx dt)

holds.



Proof of the Oscillatory lemma, Final step

> Let § = } for k € N such that } < min{d1, 52}

> Find finitely many points (tj,x;) € ' as above.

> Do the construction of step 1, 2 for each (t;, x;).

> Define (mg, Ux) = (m, U) + Z(mtjwﬁ’ Ut x.6)-
J

Claim: m, € Xj.

. d
Claim: m, —>m.



Proof of the Oscillatory lemma, Final step

Additionally we have the following estimate
My —ml[par) = // ]mk(t, x) — m(t, x)‘ dx dt
r
= // ’ thj’xﬁ(g(t,x)’ dx dt
r -
J
— Z// Im¢ x 5(t,x)| dx dt
; r
> Zé”“ a <rc - ‘m(tj,xj)f)

J
>0 <rc]F\ — // ‘m(t,x)|2 dx dt)
r

=a e (relr = ml3)).



Proof of the Oscillatory lemma, Final step

Additionally we have the following estimate

I = milsgey > e e (relf| = misr)).

Furthermore

M —mlry < [[me—ml2r VIl

and therefore

1
=l — m||f1(|-) < flmy — m||%2(|-).

Tl
Putting the previous inequalities together we obtain

2 2
G4

2
- (relr = Imi))

Imi = m|[Z2y >



Proof of the Oscillatory lemma, Final step

Hence
M2y = llm -+ me — m|[2
= ‘|mHi2(r) + [[my — m||f2(|-)
+2 / m(t,x) (my(t,x) — m(t,x)) dx dt
2

o) 5 2
2 mifsy + S (relrl = Imi))

+2 /rm(t,x) (my(t,x) —m(t,x)) dx dt.

) d )
Since my — m, the integral tends to 0 as kK — co.

im inf e 2y > iy + 22 (re ] = fmlZagy)
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2-d Compressible Euler equations

Jro +div(pv) =0
It(ov) +div(ovev)+Vp=0

8t(%QIV|2 +oelo, p)) + div [(%QIVF +oe(o,p) + pM =0

Unknowns: Variables:
e density o = o(t,x) € RT e time t € [0,00)
e velocity v = v(t,x) € R? @ spatial variable
@ pressure p = p(t,x) € RT x = (x1,x2) € R?
Ideal gas:
e(o,p) = ﬁ g, where v < 3.



Riemann initial data

We consider

_V_.p_ if xo <0
v, p)(0,x) = o’vo, 0Y(x) = (0—,v_,p-) f 2
(Q P)( ) (Q P )( ) { (Q+,V+,p—|—) if xo >0

)

where o1 € RT, vi € R? and p+ € RT are constant and
ve1=vp1=0.

X2

(0+,v+, pt)

X1

(0—,v_,p-)



Corresponding 1-d Riemann problem

Solve the corresponding 1-d Riemann problem
010+ Ox,(0v2) = 0,
d(ov2) + s, (0 V3 + p) =0,
81:(%9 Vs + oe(o, p)) + 0y, [(%@ V5 +oe(o,p)+ p) V2} =0,

v _ if xo <0
,v2,p)(0,x) = (0°, V2, p°)(x) := (- v-2.p-) 2
(2 v2,p)(0,x) = (", v2, ") (%) { (04svi2,ps) ifx2>0

J. Smoller. Shock waves and reaction-diffusion equations. New York: Springer-Verlag,
1967

C. M. Dafermos. Hyperbolic conservation laws in continuum physics. 4th ed.
Grundlehren der mathematischen Wissenschaften. Berlin, Heidelberg: Springer-Verlag,
2016



Solution of the corresponding 1-d Riemann problem

Constant states seperated by three waves
@ l-wave: Either a shock or a rarefaction wave
@ 2-wave: Contact discontinuity

@ 3-wave: Either a shock or a rarefaction wave

t
VMI,Z
o_ o4+
Om— % | OM+
VA}I-.’2
o— o0+
Pwm
V_p2 V2
p— P+

X2



Result

Theorem

We assume that the initial data o+ € RT, v4 € R?, pr € RT

fulfill v_ 1 = vi 1 = 0 and are such that the 1-d self-similar
solution consists of

@ a I-shock, a 2-contact discontinuity and a 3-shock or
@ a I-shock and a 3-shock.

Then there exist infinitly many entropy solutions.




Basic ideas of the non-uniqueness proof

> Definition: fan partition

Let po < p1 < po real numbers. A fan partition of (0, 00) x R?
is a set of 4 open sets Q_, 4,5, of the form

Q_ ={(t,x): t>0and x» < po t};
Q ={(t,x):t>0and pot < xo < 1t}
Qo ={(t,x):t>0and p1t < xo < pat}h;
Qp ={(t,x):t >0and xo > up t}.




Basic ideas of the non-uniqueness proof

> Definition: fan partition

X2



Basic ideas of the non-uniqueness proof

> Definition: fan partition

> Define a piecewise constant fan subsolution (g,V, p)

0—




Basic ideas of the non-uniqueness proof

> Definition: fan partition
> Define a piecewise constant fan subsolution (g,V, p)

> Apply convex integration on 21, to obtain v;, v,

Let (v, U) € R? x 82 and ¢ > 0 such that v v — U < S I.
Furthermore let Q C R x R? open. Then there exist infinitely many
maps (v, U) € L2(R x R?,R2 x 82) with the following properties.
> v and U vanish outside 2.
> divv = 0and d:v+div U = 0 in the sense of distributions.
> (VAV)@W+v)— (U+U)=5T ae on Q.

C. De Lellis E. Chiodaroli and O. Kreml. “Global ill-posedness of the isentropic system of
gas dynamics”. In: Comm. Pure Appl. Math. 68.7 (2015), pp. 1157-1190
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Basic ideas of the non-uniqueness proof
> Definition: fan partition

> Define a piecewise constant fan subsolution (g,v,p, U, <)

> Apply convex integration on 21, to obtain v;, v,
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Basic ideas of the non-uniqueness proof

> Definition: fan partition
> Define a piecewise constant fan subsolution (g,v, p, U,<)
> Apply convex integration on 21, to obtain v;, v,

> Define the fan subsolution such that (g, v+ v; +v,, p) is a
solution




Definition: admissible fan subsolution (1)

An adm. fan subsolution consists of 5 piecewise constant functions
(0,v,p, U,€) : (0,00) x R? — (RT x R? x RT x 8§ x RT), which
satisfy the following properties:

> There exists a fan partition Q2_, 1,5, Q. such that

. (Qi?viapiv Uiyci) on Qi
(?7 Vaﬁa Uaf) = (Ql , Vi, p1, Ul 5 Cl) on Ql
(02,v2, p2, Ua, @) on {2

where UL = vy Q@ vq — %]vi\z]lz and cx = |v4|?.

> The following inequalities hold in the sense of definiteness

V1®V1—U1<%C1]12, V2®V2—U2<%C2]12.



Definition: admissible fan subsolution (2)

> The following identities hold in the sense of distributions:

> The entropy inequality is fulfilled in the sense of distributions:

o (es(@.p)) +div (25(2.p)7) = 0



Condition for the existence of infinitely many solutions

Proposition

Existence of an Existence of infinitely
admissible fan subsolution many entropy solutions




Results

’ 1-wave ‘ 2-wave ‘ 3-wave H 1-wave ‘ 2-wave ‘ 3-wave ‘

- - - - contact -

- - shock - contact | shock

- - raref. - contact | raref.
shock - - shock | contact -
shock - shock shock | contact | shock
shock - raref. shock | contact | raref.
raref. - - raref. | contact -
raref. - shock raref. | contact | shock
raref. - raref. raref. | contact | raref.

Is the 1-d self-similar solution the unique
entropy solution to the 2-d problem?




Results

’ 1-wave ‘ 2-wave ‘ 3-wave H 1-wave ‘ 2-wave ‘ 3-wave ‘

- - - - contact -

- - shock - contact | shock

- - raref. - contact | raref.
shock - - shock | contact -

| shock [ - [ shock | shock | contact | shock |

shock - raref. shock | contact | raref.
raref. - - raref. | contact -
raref. - shock raref. | contact | shock
raref. - raref. raref. | contact | raref.

non-unique O. Kreml V. Macha H. Al Baba C. Klingenberg and S. Markfelder.
“Non-uniqueness of admissible weak solutions to the Riemann
problem for the full Euler system in 2D". In: submitted (2018).
arXiv: 1805.11354


https://arxiv.org/abs/1805.11354

Results

‘ 1-wave ‘ 2-wave ‘ 3-wave H 1-wave ‘ 2-wave ‘ 3-wave ‘

- contact -

- contact | shock

- contact | raref.

contact -

contact

raref. | contact -

raref. | contact | shock

raref. | contact | raref.

non-unique - )
G.-Q. Chen and J. Chen. “Stability of rarefaction waves and vacuum

unique states for the multidimensional Euler equations”. In: J. Hyperbolic
Differ. Equ. 4.1 (2007), pp. 105-122



Results for the isentropic Euler equations

’ 1-wave ‘ 2-wave ‘

- shock

- raref.

shock -

shock shock

shock raref.

raref. -

raref. shock

raref. raref.

Is the 1-d self-similar solution the unique
entropy solution to the 2-d problem?




Results for the isentropic Euler equations

‘ 1-wave ‘ 2-wave ‘

non-unique
unique
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