Lack of uniqueness for the multi-dimensional compressible Euler equations

Simon Markfelder

University of Würzburg

October, 2018

Fall School at the University of Würzburg

Outline

- 3 From incompressible to compressible
- Non-uniqueness of solutions for the incompressible Euler equations
- 5 Oscillatory lemma
- 6 Proof of the properties of e, \mathcal{U} and K

Outline

2 Results

- 3 From incompressible to compressible
- 4 Non-uniqueness of solutions for the incompressible Euler equations
- 5 Oscillatory lemma
- 6 Proof of the properties of e, \mathcal{U} and K

Compressible Euler equations

$$\partial_t \varrho + \operatorname{div}(\varrho \,\mathbf{v}) = 0$$
$$\partial_t (\varrho \,\mathbf{v}) + \operatorname{div}(\varrho \,\mathbf{v} \otimes \mathbf{v}) + \nabla p = 0$$
$$\partial_t \left(\frac{1}{2} \varrho |\mathbf{v}|^2 + \varrho \, e(\varrho, p) \right) + \operatorname{div} \left[\left(\frac{1}{2} \varrho |\mathbf{v}|^2 + \varrho \, e(\varrho, p) + p \right) \mathbf{v} \right] = 0$$

Unknowns:

- density $\varrho : [0, T_{max}) \times \Omega \rightarrow \mathbb{R}^+$
- velocity $\mathbf{v}: [0, \mathcal{T}_{\mathsf{max}}) \times \Omega \to \mathbb{R}^n$
- pressure $p: [0, T_{max}) \times \Omega \rightarrow \mathbb{R}^+$

Variables:

• time $t \in [0, T_{max})$

The **internal energy** $e = e(\varrho, p)$ is a given function.

Example (Ideal gas) $e(\varrho, p) = \frac{1}{\gamma - 1} \frac{p}{\varrho},$ where $\gamma > 1$ (adiabatic exponent)

Initial boundary value problem

Initial condition:

$$\varrho(0,\cdot) = \varrho_0$$
 , $\mathbf{v}(0,\cdot) = \mathbf{v}_0$, $p(0,\cdot) = p_0$

Impermeability boundary condition:

$$\boldsymbol{v}\cdot\boldsymbol{n}|_{\partial\Omega}=0$$

Conservation Laws

The Euler equations are a system of conservation laws:

 $\partial_t \mathbf{V} + \operatorname{div} \mathbf{F}(\mathbf{V}) = 0$

with

$$\mathbf{V} = \begin{pmatrix} \varrho \\ \varrho \mathbf{v} \\ \frac{1}{2}\varrho |\mathbf{v}|^2 + \varrho \, e(\varrho, p) \end{pmatrix} \quad , \quad \mathbf{F} = \begin{pmatrix} \varrho \, \mathbf{v}^{\mathsf{T}} \\ \varrho \, \mathbf{v} \otimes \mathbf{v} + p \, \mathbb{I}_n \\ (\frac{1}{2}\varrho |\mathbf{v}|^2 + \varrho \, e(\varrho, p) + p) \mathbf{v}^{\mathsf{T}} \end{pmatrix}$$

- We have to consider weak solutions.
- We need an admissibility criterion to select physically relevant solutions.

Weak solutions

Consider

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{F}(\mathbf{V}) = 0$$

with $\mathbf{V} : [0, T_{\max}) \times \Omega \to \mathbb{R}^m$, $\mathbf{F} : \mathbb{R}^m \to \mathbb{R}^{m \times n}$.

Claim: A classical solution fulfills the integral identity

$$\int_0^{T_{\max}} \int_{\Omega} \mathbf{V} \cdot \partial_t \varphi + \mathbf{F}(\mathbf{V}) : \nabla \varphi \, \mathrm{d} \mathbf{x} \, \mathrm{d} t + \int_{\Omega} \mathbf{V}_0 \cdot \varphi(0, \cdot) \, \mathrm{d} \mathbf{x} = 0$$

for all test functions $\varphi \in C^{\infty}_{c}([0, T_{\max}) \times \mathbb{R}^{n}; \mathbb{R}^{m}).$

Weak solutions

Consider

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{F}(\mathbf{V}) = 0$$

with $\mathbf{V}: [0, T_{\max}) \times \Omega \rightarrow \mathbb{R}^m$, $\mathbf{F}: \mathbb{R}^m \rightarrow \mathbb{R}^{m \times n}$.

Claim: A classical solution fulfills the integral identity

$$\int_0^{T_{\max}} \int_{\Omega} \mathbf{V} \cdot \partial_t \boldsymbol{\varphi} + \mathbf{F}(\mathbf{V}) : \nabla \boldsymbol{\varphi} \, d\mathbf{x} \, dt + \int_{\Omega} \mathbf{V}_0 \cdot \boldsymbol{\varphi}(0, \cdot) \, d\mathbf{x} = 0$$

for all test functions $\varphi \in C_c^{\infty}([0, T_{\max}) \times \mathbb{R}^n; \mathbb{R}^m)$.

Proof: Multiply the PDE with φ , integrate and apply integration by parts. The support of φ is determined by the boundary condition!

Weak solutions

Consider

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{F}(\mathbf{V}) = 0$$

with $\mathbf{V} : [0, T_{\max}) \times \Omega \to \mathbb{R}^m$, $\mathbf{F} : \mathbb{R}^m \to \mathbb{R}^{m \times n}$.

Definition: Weak solution

A weak solution is a function $\mathbf{V} \in L^{\infty}([0, T_{\max}) \times \Omega; \mathbb{R}^m)$ such that

$$\int_0^{T_{\mathsf{max}}} \int_{\Omega} \mathbf{V} \cdot \partial_t \varphi + \mathbf{F}(\mathbf{V}) : \nabla \varphi \, \, \mathsf{dx} \, \, \mathsf{d}t + \int_{\Omega} \mathbf{V}_0 \cdot \varphi(0, \cdot) \, \, \mathsf{dx} = 0$$

is fulfilled for all test functions $\varphi \in C_c^{\infty}([0, T_{\max}) \times \mathbb{R}^n; \mathbb{R}^m)$.

Weak solutions to the Euler equations, 1

A weak solution is a triple of functions $(\varrho, \mathbf{v}, \rho) \in L^{\infty}([0, T_{\max}) \times \Omega; \mathbb{R}^+ \times \mathbb{R}^n \times \mathbb{R}^+)$ such that

$$\int_{0}^{T_{\max}} \int_{\Omega} \left(\varrho \, \partial_{t} \psi + \varrho \, \mathbf{v} \cdot \nabla \psi \right) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t + \int_{\Omega} \varrho_{0} \, \psi(0, \cdot) \, \mathrm{d}\mathbf{x} = 0$$
$$\int_{0}^{T_{\max}} \int_{\Omega} \left(\varrho \, \mathbf{v} \cdot \partial_{t} \varphi + \varrho \, \mathbf{v} \otimes \mathbf{v} : \nabla \varphi + p \, \operatorname{div} \varphi \right) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$
$$+ \int_{\Omega} \varrho_{0} \, \mathbf{v}_{0} \cdot \varphi(0, \cdot) \, \mathrm{d}\mathbf{x} = 0$$

for all test functions $(\psi, \varphi) \in C_c^{\infty}([0, T_{\max}) \times \mathbb{R}^n, \mathbb{R} \times \mathbb{R}^n)$ with $\varphi \cdot \mathbf{n}|_{\partial\Omega} = 0$,

Weak solutions to the Euler equations, 2

A weak solution is a triple of functions $(\varrho, \mathbf{v}, \rho) \in L^{\infty}([0, T_{\max}) \times \Omega; \mathbb{R}^+ \times \mathbb{R}^n \times \mathbb{R}^+)$ such that

$$\begin{split} \int_{0}^{T_{\max}} \int_{\Omega} \left(\left(\frac{1}{2} \varrho |\mathbf{v}|^{2} + \varrho \, e(\varrho, p) \right) \partial_{t} \phi \right. \\ \left. + \left(\frac{1}{2} \varrho |\mathbf{v}|^{2} + \varrho \, e(\varrho, p) + p \right) \mathbf{v} \cdot \nabla \phi \right) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \\ \left. + \int_{\Omega} \left(\frac{1}{2} \varrho_{0} |\mathbf{v}_{0}|^{2} + \varrho_{0} \, e(\varrho_{0}, p_{0}) \right) \phi(0, \cdot) \, \mathrm{d}\mathbf{x} \,\, = \,\, 0 \end{split}$$

for all test functions $\phi \in C_c^{\infty}([0, T_{\max}) \times \mathbb{R}^n, \mathbb{R}).$

Admissibility criterion

Consider

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{F}(\mathbf{V}) = 0$$

with $\mathbf{V} : [0, T_{\max}) \times \Omega \to \mathbb{R}^m$, $\mathbf{F} : \mathbb{R}^m \to \mathbb{R}^{m \times n}$.

Definition: Entropy - entropy flux - pair

A pair of functions $(\eta, \psi) : \mathbb{R}^m \to \mathbb{R} \times \mathbb{R}^n$, $\mathbf{V} \mapsto (\eta(\mathbf{V}), \psi(\mathbf{V}))$ is called entropy - entropy flux - pair if

• η is a convex function and

•
$$\partial_{V_i}\psi_j = \sum_{k=1}^m \partial_{V_k}\eta \cdot \partial_{V_i}F_{kj}.$$

Claim: Classical solutions fulfill $\partial_t \eta(\mathbf{V}) + \operatorname{div} \psi(\mathbf{V}) = 0$.

Proof:

Admissibility criterion

Consider

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{F}(\mathbf{V}) = 0$$

with $\mathbf{V} : [0, T_{\max}) \times \Omega \to \mathbb{R}^m$, $\mathbf{F} : \mathbb{R}^m \to \mathbb{R}^{m \times n}$.

Definition: Entropy - entropy flux - pair

A pair of functions $(\eta, \psi) : \mathbb{R}^m \to \mathbb{R} \times \mathbb{R}^n$, $\mathbf{V} \mapsto (\eta(\mathbf{V}), \psi(\mathbf{V}))$ is called entropy - entropy flux - pair if

• η is a convex function and

•
$$\partial_{V_i}\psi_j = \sum_{k=1}^m \partial_{V_k}\eta \cdot \partial_{V_i}F_{kj}.$$

Claim: Classical solutions fulfill $\partial_t \eta(\mathbf{V}) + \operatorname{div} \psi(\mathbf{V}) = 0$.

Proof:

$$\begin{aligned} \partial_t \eta(\mathbf{V}) + \partial_{\mathsf{x}_j} \psi_j(\mathbf{V}) &= \partial_{\mathsf{V}_k} \eta \cdot \partial_t \mathsf{V}_k + \partial_{\mathsf{V}_i} \psi_j \cdot \partial_{\mathsf{x}_j} \mathsf{V}_i \\ &= \partial_{\mathsf{V}_k} \eta \cdot \partial_t \mathsf{V}_k + \partial_{\mathsf{V}_k} \eta \cdot \partial_{\mathsf{V}_i} \mathsf{F}_{kj} \cdot \partial_{\mathsf{x}_j} \mathsf{V}_i \\ &= \partial_{\mathsf{V}_k} \eta \cdot \left(\partial_t \mathsf{V}_k + \partial_{\mathsf{x}_j} \mathsf{F}_{kj} \right) = 0 \end{aligned}$$

Admissibility criterion

Consider

$$\partial_t \mathbf{V} + \operatorname{div} \mathbf{F}(\mathbf{V}) = 0$$

with $\mathbf{V} : [0, T_{\max}) \times \Omega \to \mathbb{R}^m$, $\mathbf{F} : \mathbb{R}^m \to \mathbb{R}^{m \times n}$.

Definition: Entropy - entropy flux - pair

A pair of functions $(\eta, \psi) : \mathbb{R}^m \to \mathbb{R} \times \mathbb{R}^n$, $\mathbf{V} \mapsto (\eta(\mathbf{V}), \psi(\mathbf{V}))$ is called entropy - entropy flux - pair if

• η is a convex function and

•
$$\partial_{V_i}\psi_j = \sum_{k=1}^m \partial_{V_k}\eta \cdot \partial_{V_i}F_{kj}.$$

Definition: Admissible solution (or entropy solution)

A weak solution is called admissible (or entropy solution) if

$$\partial_t \eta(\mathbf{V}) + \operatorname{div} \psi(\mathbf{V}) \leq 0$$

holds in the weak sense for all entropy - entropy flux - pairs (η, ψ) .

Entropy solutions to the Euler equations

For the Euler equations

$$\eta = -\varrho \, s(\varrho, p) \qquad \psi = -\varrho \, s(\varrho, p) \, \mathbf{v}$$

is an entropy - entropy flux - pair.

Ideal gas
$$s(\varrho, p) = rac{1}{\gamma - 1} \log p - rac{\gamma}{\gamma - 1} \log arrho$$

A weak solution is admissible if

$$\int_{0}^{T_{\max}} \int_{\Omega} \left(\varrho \, s(\varrho, p) \, \partial_{t} \varphi + \varrho \, s(\varrho, p) \, \mathbf{v} \cdot \nabla \varphi \right) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \\ + \int_{\Omega} \left(\varrho_{0} \, s(\varrho_{0}, p_{0}) \right) \varphi(0, \cdot) \, \mathrm{d}\mathbf{x} \, \leq \, 0$$

for all test functions $\varphi \in C_c^{\infty}([0, T_{\max}) \times \mathbb{R}^n, [0, \infty)).$

Isentropic Euler equations

$$\partial_t \varrho + \operatorname{div}(\varrho \,\mathbf{v}) = 0$$
$$\partial_t(\varrho \,\mathbf{v}) + \operatorname{div}(\varrho \,\mathbf{v} \otimes \mathbf{v}) + \nabla p(\varrho) = 0$$

Unknowns:

- density $\varrho : [0, T_{max}) \times \Omega \to \mathbb{R}^+$
- velocity $\mathbf{v}: [0, \mathcal{T}_{\mathsf{max}}) \times \Omega \to \mathbb{R}^n$

Variables:

• time
$$t \in [0, T_{max})$$

spatial variable x = (x₁,...,x_n) ∈ Ω
 Ω ⊂ ℝⁿ bounded, n = 2,3

Entropy (energy) inequality:

$$\partial_t \left(\frac{1}{2} \varrho |\mathbf{v}|^2 + P(\varrho) \right) + \operatorname{div} \left[\left(\frac{1}{2} \varrho |\mathbf{v}|^2 + P(\varrho) + p(\varrho) \right) \mathbf{v} \right] \le 0$$

The pressure $p = p(\varrho)$ and the pressure potential $P = P(\varrho)$ are given functions.

Example (Polytropic pressure law) $p(\varrho) = \varrho^{\gamma}, P(\varrho) = \frac{1}{\gamma - 1} \varrho^{\gamma},$ where $\gamma > 1$

Outline

- 3 From incompressible to compressible
- 4 Non-uniqueness of solutions for the incompressible Euler equations
- 5 Oscillatory lemma
- 6 Proof of the properties of e, \mathcal{U} and K

Results for the isentropic Euler equations

Theorem

Consider the isentropic Euler equations with an arbitrary pressure function $p(\varrho)$. There exist initial data $(\varrho_0, \mathbf{v}_0)$ for which there are infinitely many admissible weak solutions (ϱ, \mathbf{v}) .

C. De Lellis and L. Székelyhidi Jr. "On admissibility criteria for weak solutions of the Euler equations". In: Arch. Ration. Mech. Anal. 195.1 (2010), pp. 225–260

Theorem

Consider the isentropic Euler equations with an arbitrary pressure function $p(\varrho)$. For any given periodic initial density $\varrho_0 \in C^1$ there exist a periodic initial momentum $\mathbf{m}_0 \in L^\infty$ and a positive time T_{\max} for which there are infinitely many space-periodic admissible weak solutions (ϱ, \mathbf{m}) on $[0, T_{\max}) \times \mathbb{R}^n$.

E. Chiodaroli. "A counterexample to well-posedness of entropy solutions to the compressible Euler system". In: J. Hyperbolic Differ. Equ. 11.3 (2014), pp. 493–519

Theorem

For any given piecewise-constant initial density ϱ_0 and pressure p_0 there exists an initial velocity $\mathbf{v}_0 \in L^{\infty}$ for which there are infinitely many admissible weak solutions (ϱ, \mathbf{v}, p) on $[0, T_{max}) \times \Omega$.

O. Kreml E. Feireisl C. Klingenberg and S. Markfelder. "On oscillatory solutions to the complete Euler system". In: submitted (2017). arXiv: 1710. 10918

Theorem (the one we are going to prove)

For any given constant initial density ϱ_0 and pressure p_0 there exists an initial velocity $\mathbf{v}_0 \in L^{\infty}$ for which there are infinitely many admissible weak solutions (ϱ, \mathbf{v}, p) on $[0, T_{max}) \times \Omega$.

Outline

1 Introduction

2 Results

3 From incompressible to compressible

4 Non-uniqueness of solutions for the incompressible Euler equations

5 Oscillatory lemma

6 Proof of the properties of e, \mathcal{U} and K

Basic idea

De Lellis and Székelyhidi showed existence of infinitely many solutions (\mathbf{v}, p) to the *incompressible* Euler equations

$$\begin{aligned} &\operatorname{div} \mathbf{v} = \mathbf{0},\\ &\partial_t \mathbf{v} + \operatorname{div} (\mathbf{v} \otimes \mathbf{v}) + \nabla p = \mathbf{0}, \end{aligned}$$

where one can achieve $p \equiv \text{const}$ and prescribe the kinetic energy $|\mathbf{v}(t, \mathbf{x})|^2 = \overline{e}(t, \mathbf{x})$ for a. e. (t, \mathbf{x}) .

C. De Lellis and L. Székelyhidi Jr. "The Euler equations as a differential inclusion". In: Ann. of Math. (2) 170.3 (2009), pp. 1417–1436

C. De Lellis and L. Székelyhidi Jr. "On admissibility criteria for weak solutions of the Euler equations". In: Arch. Ration. Mech. Anal. 195.1 (2010), pp. 225–260

Idea

For the *compressible* Euler equations set $\varrho \equiv \text{const}$, $\overline{e} \equiv \text{const}$ and use their result.

Proposition 1

Let $\Omega \subset \mathbb{R}^n$ (n = 2, 3) open and bounded, $0 < T < \infty$ and r > 0, c > 0 positive constants. Then there exists $\mathbf{m}_0, \mathbf{m}_T \in L^{\infty}(\Omega; \mathbb{R}^n)$ such that the problem

$$\operatorname{div} \mathbf{m} = 0$$
$$\partial_t \mathbf{m} + \operatorname{div} \left(\frac{\mathbf{m} \otimes \mathbf{m}}{r} - \frac{1}{n} \frac{|\mathbf{m}|^2}{r} \mathbb{I}_n \right) = 0$$
$$\mathbf{m}(0, \cdot) = \mathbf{m}_0$$
$$\mathbf{m}(T, \cdot) = \mathbf{m}_T$$

has infinitely many weak solutions that fulfill $\frac{|\mathbf{m}|^2}{r} = c$ for a. e. $(t, \mathbf{x}) \in [0, T] \times \Omega$.

Proposition 1

Let $\Omega \subset \mathbb{R}^n$ (n = 2, 3) open and bounded, $0 < T < \infty$ and r > 0, c > 0 positive constants. Then there exists $\mathbf{m}_0, \mathbf{m}_T \in L^{\infty}(\Omega; \mathbb{R}^n)$ such that there are infinitely many

$$\mathbf{m} \in L^\infty((0,\,T) imes \Omega;\mathbb{R}^n)\cap \mathit{C}_{\mathsf{weak}}([0,\,T];\mathit{L}^2(\Omega;\mathbb{R}^n))$$

with

$$\int_{0}^{T} \int_{\Omega} \mathbf{m} \cdot \nabla \psi \, \mathrm{d}\mathbf{x} \, \mathrm{d}t = 0$$
$$\int_{0}^{T} \int_{\Omega} \left[\mathbf{m} \cdot \partial_{t} \varphi + \left(\frac{\mathbf{m} \otimes \mathbf{m}}{r} - \frac{1}{n} \frac{|\mathbf{m}|^{2}}{r} \mathbb{I}_{n} \right) : \nabla \varphi \right] \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$
$$+ \int_{\Omega} \mathbf{m}_{0} \cdot \varphi(0, \cdot) \, \mathrm{d}\mathbf{x} - \int_{\Omega} \mathbf{m}_{T} \cdot \varphi(T, \cdot) \, \mathrm{d}\mathbf{x} = 0$$

for all test functions $(\psi, oldsymbol{arphi}) \in \mathit{C}^\infty_c([0, T] imes \mathbb{R}^n, \mathbb{R} imes \mathbb{R}^n)$ and

$$\frac{|\mathbf{m}|^2}{r} = c$$
 for a. e. $(t, \mathbf{x}) \in [0, T] \times \Omega$.

Proof of the theorem

Proposition 1*

Let $\Omega \subset \mathbb{R}^n$ (n = 2, 3) open and bounded, $0 < T < \infty$ and r > 0, c > 0 positive constants. Then there exists $\mathbf{m}_0, \mathbf{m}_T \in L^{\infty}(\Omega; \mathbb{R}^n)$ such that there are infinitely many

$$\mathbf{m} \in L^\infty((0,\,T) imes \Omega;\mathbb{R}^n)\cap \mathit{C}_{\mathsf{weak}}([0,\,T];\mathit{L}^2(\Omega;\mathbb{R}^n))$$

with

$$\int_{0}^{T} \int_{\Omega} \mathbf{m} \cdot \nabla \psi \, \mathrm{d}\mathbf{x} \, \mathrm{d}t = 0$$
$$\int_{0}^{T} \int_{\Omega} \left[\mathbf{m} \cdot \partial_{t} \varphi + \left(\frac{\mathbf{m} \otimes \mathbf{m}}{r} - \frac{1}{n} \frac{|\mathbf{m}|^{2}}{r} \mathbb{I}_{n} \right) : \nabla \varphi \right] \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$
$$+ \int_{\Omega} \mathbf{m}_{0} \cdot \varphi(0, \cdot) \, \mathrm{d}\mathbf{x} - \int_{\Omega} \mathbf{m}_{T} \cdot \varphi(T, \cdot) \, \mathrm{d}\mathbf{x} = 0$$

for all test functions $(\psi, oldsymbol{arphi}) \in \mathit{C}^\infty_c([0, T] imes \mathbb{R}^n, \mathbb{R} imes \mathbb{R}^n)$ and

$$\frac{|\mathbf{m}|^2}{r} = c \quad \text{ for all } t \in [0, T] \text{ and a. e. } \mathbf{x} \in \Omega.$$

Outline

1 Introduction

3 From incompressible to compressible

- Non-uniqueness of solutions for the incompressible Euler equations
- 5 Oscillatory lemma
- 6 Proof of the properties of e, \mathcal{U} and K

References

C. De Lellis and L. Székelyhidi Jr. "The Euler equations as a differential inclusion". In: Ann. of Math. (2) 170.3 (2009), pp. 1417–1436

C. De Lellis and L. Székelyhidi Jr. "On admissibility criteria for weak solutions of the Euler equations". In: Arch. Ration. Mech. Anal. 195.1 (2010), pp. 225–260

E. Chiodaroli. "A counterexample to well-posedness of entropy solutions to the compressible Euler system". In: J. Hyperbolic Differ. Equ. 11.3 (2014), pp. 493–519

E. Feireisl. "Weak solutions to problems involving inviscid fluids". In: *Mathematical Fluid Dynamics, Present and Future*. Vol. 183. Springer Proceedings in Mathematics and Statistics. Tokyo: Springer-Verlag, 2016, pp. 377–399

$$\operatorname{div} \mathbf{m} = \mathbf{0}$$
$$\partial_t \mathbf{m} + \operatorname{div} \left(\frac{\mathbf{m} \otimes \mathbf{m}}{r} - \frac{1}{n} \frac{|\mathbf{m}|^2}{r} \mathbb{I}_n \right) = \mathbf{0}$$

$$\operatorname{div} \mathbf{m} = 0$$
$$\partial_t \mathbf{m} + \operatorname{div} \left(\frac{\mathbf{m} \otimes \mathbf{m}}{r} - \frac{1}{n} \frac{|\mathbf{m}|^2}{r} \mathbb{I}_n \right) = 0$$

■ Rewrite the system as a linear one with a non-linear constraint by introducing the new unknown U ∈ S₀ⁿ:

$$\operatorname{div} \mathbf{m} = \mathbf{0},$$
$$\partial_t \mathbf{m} + \operatorname{div} U = \mathbf{0},$$

with the non-linear constraint $(\mathbf{m}, U) \in Z$ where

$$Z := \left\{ (\mathbf{m}, U) : [0, T] \times \Omega \to \mathbb{R}^n \times \mathcal{S}_0^n \, \big| \, (\mathbf{m}(t, \mathbf{x}), U(t, \mathbf{x})) \in \mathcal{K} \right.$$

for almost all $(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^n \right\},$
$$\mathcal{K} := \left\{ (\mathbf{m}, U) \in \mathbb{R}^n \times \mathcal{S}_0^n \, \big| \, U = \frac{\mathbf{m} \otimes \mathbf{m}}{r} - \frac{c}{n} \mathbb{I}_n \right\}.$$

2 Relax the constraint: $Z \mapsto \widehat{Z}$, with

$$\widehat{Z} := \Big\{ (\mathbf{m}, U) : [0, T] imes \Omega o \mathbb{R}^n imes \mathcal{S}_0^n \, ig| \, (\mathbf{m}(t, \mathbf{x}), U(t, \mathbf{x})) \in (\mathcal{K}^{\mathrm{co}})^\circ \$$
for almost all $(t, \mathbf{x}) \in [0, T] imes \mathbb{R}^n \Big\}.$

Weak solutions to the linearized system are called **subsolutions** if they fulfill the relaxed constraint.

2 Relax the constraint: $Z \mapsto \widehat{Z}$, with

$$\widehat{Z} := \Big\{ (\mathbf{m}, U) : [0, T] \times \Omega \to \mathbb{R}^n \times \mathcal{S}_0^n \, \big| \, (\mathbf{m}(t, \mathbf{x}), U(t, \mathbf{x})) \in (\mathcal{K}^{co})^{\circ} \\ \text{for almost all } (t, \mathbf{x}) \in [0, T] \times \mathbb{R}^n \Big\}.$$

Weak solutions to the linearized system are called **subsolutions** if they fulfill the relaxed constraint.

③ Find a subsolution $(\overline{\mathbf{m}}, \overline{U})$.

2 Relax the constraint: $Z \mapsto \widehat{Z}$, with

$$\begin{split} \widehat{Z} &:= \Big\{ (\mathbf{m}, U) : [0, T] \times \Omega \to \mathbb{R}^n \times \mathcal{S}_0^n \, \big| \, \big(\mathbf{m}(t, \mathbf{x}), U(t, \mathbf{x}) \big) \in (\mathcal{K}^{\mathsf{co}})^{\circ} \\ & \text{for almost all } (t, \mathbf{x}) \in [0, T] \times \mathbb{R}^n \Big\}. \end{split}$$

Weak solutions to the linearized system are called **subsolutions** if they fulfill the relaxed constraint.

Solution $(\overline{\mathbf{m}}, \overline{U})$.

Constructive approach

Construct a sequence of subsolutions (m_k, U_k)_k (where (m₀, U₀) = (m
, U)) converging to a solution (m, U).

2 Relax the constraint: $Z \mapsto \widehat{Z}$, with

$$\widehat{Z} := \Big\{ (\mathbf{m}, U) : [0, T] imes \Omega o \mathbb{R}^n imes \mathcal{S}_0^n \, | \, (\mathbf{m}(t, \mathbf{x}), U(t, \mathbf{x})) \in (\mathcal{K}^{co})^\circ \$$
for almost all $(t, \mathbf{x}) \in [0, T] imes \mathbb{R}^n \Big\}.$

Weak solutions to the linearized system are called **subsolutions** if they fulfill the relaxed constraint.

• Find a subsolution $(\overline{\mathbf{m}}, \overline{U})$.

Constructive approach

Construct a sequence of subsolutions (m_k, U_k)_k (where (m₀, U₀) = (m
, U)) converging to a solution (m, U).

Baire category approach

Prove - by using Baire category arguments - that if a subsolution exists then there are infinitely many solutions.

Geometric setup

Define

$$e: \mathbb{R}^n \times \mathcal{S}_0^n \to \mathbb{R}, \quad e(\mathbf{m}, U) = \lambda_{\max} \left(\frac{\mathbf{m} \otimes \mathbf{m}}{r} - U \right)$$
$$\mathcal{U}:= \left\{ (\mathbf{m}, U) \in \mathbb{R}^n \times \mathcal{S}_0^n \mid e(\mathbf{m}, U) < \frac{c}{n} \right\}$$
$$\mathcal{K}:= \left\{ (\mathbf{m}, U) \in \mathbb{R}^n \times \mathcal{S}_0^n \mid \frac{\mathbf{m} \otimes \mathbf{m}}{r} - U = \frac{c}{n} \mathbb{I}_n \right\}$$

Properties:

•
$$\frac{|\mathbf{m}|^2}{rn} \le e(\mathbf{m}, U)$$
 for all $(\mathbf{m}, U) \in \mathbb{R}^n \times \mathcal{S}_0^n$
• $\frac{|\mathbf{m}|^2}{rn} = e(\mathbf{m}, U) \Leftrightarrow U = \frac{\mathbf{m} \otimes \mathbf{m}}{r} - \frac{|\mathbf{m}|^2}{rn} \mathbb{I}_n$

• *e* is a convex function

•
$$|U|_{\infty} \leq (n-1) e(\mathbf{m}, U)$$
 for all $(\mathbf{m}, U) \in \mathbb{R}^n imes \mathcal{S}_0^n$

• $\mathcal{U} = (K^{co})^{\circ}$, where K^{co} denotes the convex hull of K.

Proposition 2

Assume there exists a smooth solution $(\overline{\mathbf{m}}, \overline{U})$ of the system

 $\operatorname{div} \overline{\mathbf{m}} = \mathbf{0}$ $\partial_t \overline{\mathbf{m}} + \operatorname{div} \overline{U} = \mathbf{0}$

with the following properties

$$\begin{split} \overline{\mathbf{m}} &\in C_{\mathsf{weak}}([0,T]; L^2(\mathbb{R}^n; \mathbb{R}^n)) \\ \mathrm{supp}\left(\overline{\mathbf{m}}(t, \cdot), \overline{U}(t, \cdot)\right) \subset \Omega \quad \text{for all } t \in (0,T) \\ e(\overline{\mathbf{m}}, \overline{U}) < \frac{c}{n} \quad \text{for all } (t, \mathbf{x}) \in (0,T) \times \Omega. \end{split}$$

Then there exist infinitely many solutions ${\bf m}$ as in Proposition 1 such that

$$\begin{split} \mathbf{m}(t,\cdot) &= \overline{\mathbf{m}}(t,\cdot) \quad \text{for } t = 0, T \\ \frac{|\mathbf{m}(t,\mathbf{x})|^2}{r} &= c \quad \text{for almost every } (t,\mathbf{x}) \in (0,T) \times \Omega \end{split}$$

Proof of Proposition 1
Define the set

$$X_0 := \Big\{ \mathbf{m} \in C^{\infty}((0, T) \times \mathbb{R}^n; \mathbb{R}^n) \cap C_{\mathsf{weak}}([0, T]; L^2(\mathbb{R}^n; \mathbb{R}^n)) \\ \text{ conditions C1,C2,C3 hold} \Big\}.$$

C1 div $\mathbf{m} = 0$

C2
$$\mathbf{m}(t, \cdot) = \overline{\mathbf{m}}(t, \cdot)$$
 for $t = 0, T$
supp $\mathbf{m}(t, \cdot) \subset \Omega$ for all $t \in (0, T)$

C3 there exists $U \in C^{\infty}((0, T) \times \mathbb{R}^n; \mathcal{S}_0^n)$ with

• supp
$$U(t, \cdot) \subset \Omega$$
 for all $t \in (0, T)$

- $e(\mathbf{m}(t, \mathbf{x}), U(t, \mathbf{x})) < \frac{c}{n}$ for all $(t, \mathbf{x}) \in (0, T) \times \Omega$ $\partial_t \mathbf{m} + \operatorname{div} U = 0$ in $(0, T) \times \Omega$.

Define the set

$$X_0 := \Big\{ \mathbf{m} \in C^{\infty}((0, T) \times \mathbb{R}^n; \mathbb{R}^n) \cap C_{\mathsf{weak}}([0, T]; L^2(\mathbb{R}^n; \mathbb{R}^n)) \\ \text{ conditions C1,C2,C3 hold} \Big\}.$$

C1 div $\mathbf{m} = 0$

C2
$$\mathbf{m}(t, \cdot) = \overline{\mathbf{m}}(t, \cdot)$$
 for $t = 0, T$
supp $\mathbf{m}(t, \cdot) \subset \Omega$ for all $t \in (0, T)$

C3 there exists $U \in C^{\infty}((0, T) \times \mathbb{R}^n; \mathcal{S}_0^n)$ with

• supp
$$U(t,\cdot)\subset \Omega$$
 for all $t\in (0,T)$

- $(\mathbf{m}(t, \mathbf{x}), U(t, \mathbf{x})) \in \mathcal{U}$ for all $(t, \mathbf{x}) \in (0, T) \times \Omega$
- $\partial_t \mathbf{m} + \operatorname{div} U = 0$ in $(0, T) \times \Omega$.

Let $\mathbf{m} \in X_0$. Then

$$\begin{split} \|\mathbf{m}(t,\cdot)\|_{L^2}^2 &= \int_{\Omega} |\mathbf{m}(t,\mathbf{x})|^2 \, \mathrm{d}\mathbf{x} \\ &\leq n \, r \int_{\Omega} e(\mathbf{m}(t,\mathbf{x}), U(t,\mathbf{x})) \, \mathrm{d}\mathbf{x} \\ &< c \, r \, |\Omega| \qquad \qquad \text{for all } t \in (0,T) \\ \|\mathbf{m}(t,\cdot)\|_{L^2}^2 &= \|\overline{\mathbf{m}}(t,\cdot)\|_{L^2}^2 \qquad \qquad \text{for } t = 0, T. \end{split}$$

 \triangleright **m** : $[0, T] \rightarrow L^2$ takes values in a bounded subset $B \subset L^2$.

Let $\mathbf{m} \in X_0$. Then

- ▷ $\mathbf{m} : [0, T] \rightarrow L^2$ takes values in a bounded subset $B \subset L^2$.
- \triangleright W.l.o.g. assume that B is closed in the weak topology of L^2 (otherwise consider the weak closure of B).
- ▷ The weak topology on *B* is metrizable (denote this metric by d_B) and (B, d_B) is a compact metric space (Alaoglu's theorem).
- \triangleright Hence (B, d_B) is a complete metric space.
- ▷ Define the metric d on $C([0, T]; (B, d_B))$ by

$$d(\mathbf{m}_1,\mathbf{m}_2):=\max_{t\in[0,T]}d_B(\mathbf{m}_1(t,\cdot),\mathbf{m}_2(t,\cdot)).$$

- ▷ Then $(C([0, T]; (B, d_B)), d)$ is a complete metric space, too.
- ▷ Let X be the closure of X_0 w. r. t. the metric d.
- \triangleright Then (X, d) is a complete metric space.

Lemma

Let $\mathbf{m} \in X$ such that $\frac{|\mathbf{m}|^2}{r} = c$ for a. e. $(t, \mathbf{x}) \in (0, T) \times \Omega$ then \mathbf{m} is a solution as in Proposition 2.

Proof:

Baire category theory

- Let (M, \mathcal{T}) be a topological space. A subset $A \subset M$ is called
 - *nowhere dense* if the interior of the closure of A is empty:

$$(\overline{A})^{\circ} = \emptyset,$$

- meager (or of first category) if A is the countable union of nowhere dense sets,
- *residual* if the complement of A is meager.
- Baire category theorem: If (M, d) is a complete metric space, then every residual subset of M is dense.
- Let (M₁, *T*) a topological and (M₂, d) a metric space. A function f : M₁ → M₂ is called Baire-1-function if it is the pointwise limit of a sequence of continuous functions.
- Let (M₁, T) a topological and (M₂, || · ||) a normed space and consider a Baire-1-function f : M₁ → M₂. Then the set C ⊂ M₁ of the points in which f is continuous is residual in M₁.

Plan of the proof:

 $\triangleright\,$ Because of the lemma, each $m\in Y$ is a solution, where

$$Y := \left\{ \mathbf{m} \in X \ \Big| \ \frac{|\mathbf{m}|^2}{r} = c \text{ for a.e. } (t, \mathbf{x}) \in (0, T) \times \Omega \right\}.$$

- ▷ Show that the identity map $I : (X, d) \rightarrow (L^2, \| \cdot \|_{L^2})$, $\mathbf{m} \mapsto \mathbf{m}$ is a Baire-1-function.
- ▷ The set $C := \{\mathbf{m} \in X \mid I \text{ is continuous in } \mathbf{m}\}$ is residual in X.
- ▷ Show that $C \subset Y$.
- ▷ Since (X, d) is a complete metric space, C is dense (Baire category theorem). Hence Y is dense.
- \triangleright Show that X is infinite. Then Y is infinite, too.

Claim: $I: (X, d) \rightarrow (L^2, \|\cdot\|_{L^2})$, $\mathbf{m} \mapsto \mathbf{m}$ is a Baire-1-function.

Claim: $I : (X, d) \rightarrow (L^2, \|\cdot\|_{L^2})$, $\mathbf{m} \mapsto \mathbf{m}$ is a Baire-1-function.

Let $I_{\delta} : (X, d) \to (L^2, \|\cdot\|_{L^2})$ defined by $\mathbf{m} \mapsto \Phi_{\delta} * \mathbf{m}$ with a space-time mollifier Φ_{δ} . One can show that

- $\mathbf{m}_k \stackrel{d}{\rightarrow} \mathbf{m}$ implies $\Phi_{\delta} * \mathbf{m}_k \rightarrow \Phi_{\delta} * \mathbf{m}$ in L^2 ,
- $\Phi_{\delta} * \mathbf{m} \to \mathbf{m}$ in L^2 for $\delta \to 0$.

Hence the functions I_{δ} are continuous and converge pointwise to I as $\delta \rightarrow 0$.

Claim: $C \subset Y$.

$$Y := \left\{ \mathbf{m} \in X \mid \frac{|\mathbf{m}|^2}{r} = c \text{ for a.e. } (t, \mathbf{x}) \in (0, T) \times \Omega \right\}$$
$$C := \left\{ \mathbf{m} \in X \mid I \text{ is continuous in } \mathbf{m} \right\}$$

Claim: $C \subset Y$.

$$Y := \left\{ \mathbf{m} \in X \mid \frac{|\mathbf{m}|^2}{r} = c \text{ for a.e. } (t, \mathbf{x}) \in (0, T) \times \Omega \right\}$$
$$C := \left\{ \mathbf{m} \in X \mid I \text{ is continuous in } \mathbf{m} \right\}$$

Oscillatory Lemma

For all compact sets $\Gamma \subset (0, T) \times \Omega$ there exists a constant $\beta > 0$ with the following property. For any given $\mathbf{m} \in X_0$ there exists a sequence $(\mathbf{m}_k)_{k \in \mathbb{N}} \subset X_0$ such that

$$\mathbf{m}_{k} \stackrel{d}{\rightarrow} \mathbf{m}$$

limit $\|\mathbf{m}_{k}\|_{L^{2}(\Gamma)}^{2} \geq \|\mathbf{m}\|_{L^{2}(\Gamma)}^{2} + \beta \left(c \ r \ |\Gamma| - \|\mathbf{m}\|_{L^{2}(\Gamma)}^{2}\right)^{2}.$

Claim: X is infinite.

Claim: X is infinite.

- ▷ Since $\overline{\mathbf{m}} \in X_0$, $X_0 \neq \emptyset$.
- \triangleright From the oscillatory lemma we can deduce that X_0 is infinite.
- \triangleright Hence X is infinite.

Outline

1 Introduction

2 Results

- 3 From incompressible to compressible
- 4 Non-uniqueness of solutions for the incompressible Euler equations

5 Oscillatory lemma

6 Proof of the properties of e, \mathcal{U} and K

Oscillatory lemma

Lemma

For all compact sets $\Gamma \subset (0, T) \times \Omega$ there exists a constant $\beta > 0$ with the following property. For any given $\mathbf{m} \in X_0$ there exists a sequence $(\mathbf{m}_k)_{k \in \mathbb{N}} \subset X_0$ such that

$$\mathbf{m}_{k} \stackrel{d}{\to} \mathbf{m}$$

$$\liminf_{k \to \infty} \|\mathbf{m}_{k}\|_{L^{2}(\Gamma)}^{2} \geq \|\mathbf{m}\|_{L^{2}(\Gamma)}^{2} + \beta \left(c \ r \ |\Gamma| - \|\mathbf{m}\|_{L^{2}(\Gamma)}^{2}\right)^{2}.$$

Define

$$n^* := \dim(\mathbb{R}^n \times S_0^n) + 1 = n + \sum_{i=1}^n i - 1 + 1 = \frac{n(n+3)}{2}.$$

Fix an arbitrary point $(t_0, \mathbf{x}_0) \in \Gamma$. For convenience we define

$$(\mathbf{m}^{\star}, U^{\star}) := (\mathbf{m}(t_0, \mathbf{x}_0), U(t_0, \mathbf{x}_0)).$$

By assumption it holds that $(\mathbf{m}^{\star}, U^{\star}) \in \mathcal{U}$.

Claim: \exists a segment $\sigma_{t_0,\mathbf{x}_0} = [-p,p] \subset \mathbb{R}^n \times \mathcal{S}_0^n$ such that:

● ∃ $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ with $|\mathbf{a}| = |\mathbf{b}| = \sqrt{rc}$ and $\mathbf{a} \neq \pm \mathbf{b}$, and $\lambda > 0$ such that

$$p = \lambda \left[\left(\mathbf{a}, \frac{\mathbf{a} \otimes \mathbf{a}}{r} \right) - \left(\mathbf{b}, \frac{\mathbf{b} \otimes \mathbf{b}}{r} \right) \right].$$

$$\begin{array}{l} \textcircled{0} \quad (\mathbf{m}^{\star}, U^{\star}) + \sigma_{t_{0}, \mathbf{x}_{0}} \subset \mathcal{U}. \\ \textcircled{0} \quad \forall \ \varepsilon > 0 \ \exists \ a \ pair \ (\mathbf{m}_{t_{0}, \mathbf{x}_{0}}, U_{t_{0}, \mathbf{x}_{0}}) \in C_{c}^{\infty}\big((-1, 1) \times B_{1}(0)\big) \ s. \ t. \\ \textcircled{0} \quad div \ \mathbf{m}_{t_{0}, \mathbf{x}_{0}} = 0 \qquad \partial_{t} \mathbf{m}_{t_{0}, \mathbf{x}_{0}} + div \ U_{t_{0}, \mathbf{x}_{0}} = 0 \\ \textcircled{0} \quad dist \ \big((\mathbf{m}_{t_{0}, \mathbf{x}_{0}}(t, \mathbf{x}), U_{t_{0}, \mathbf{x}_{0}}(t, \mathbf{x})), \sigma_{t_{0}, \mathbf{x}_{0}}\big) < \varepsilon \\ for \ all \ (t, \mathbf{x}) \in (-1, 1) \times B_{1}(0) \\ \textcircled{0} \quad \int_{\mathbb{R}} \int_{\mathbb{R}^{n}} \left|\mathbf{m}_{t_{0}, \mathbf{x}_{0}}(t, \mathbf{x})\right| \ d\mathbf{x} \ dt \ge c_{1} \left(r \ c - \left|\mathbf{m}(t_{0}, \mathbf{x}_{0})\right|^{2}\right) \\ for \ a \ suitable \ constant \ c_{1} > 0 \\ \textcircled{0} \quad \int_{\mathbb{R}^{n}} \mathbf{m}_{t_{0}, \mathbf{x}_{0}}(t, \mathbf{x}) \ d\mathbf{x} = 0. \end{array}$$

Claim: \exists a segment $\sigma_{t_0,\mathbf{x}_0} = [-\rho, \rho] \subset \mathbb{R}^n \times \mathcal{S}_0^n$ such that:

● ∃ $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ with $|\mathbf{a}| = |\mathbf{b}| = \sqrt{rc}$ and $\mathbf{a} \neq \pm \mathbf{b}$, and $\lambda > 0$ such that

$$p = \lambda \left[\left(\mathbf{a}, \frac{\mathbf{a} \otimes \mathbf{a}}{r} \right) - \left(\mathbf{b}, \frac{\mathbf{b} \otimes \mathbf{b}}{r} \right) \right].$$

Proof:

- $\triangleright \ \ \mbox{We have that} \ ({\mathbf m}^\star, \, U^\star) \in {\mathcal U} = ({\mathcal K}^{\rm co})^\circ.$
- ▷ ∃ finitely many $(\mathbf{m}_i, U_i) \in K$ such that (\mathbf{m}^*, U^*) lies in the interior of the convex polytope spanned by the (\mathbf{m}_i, U_i) .
- ▷ Since (\mathbf{m}^*, U^*) lies in the interior, it is possible to slightly change the (\mathbf{m}_i, U_i) to obtain $\mathbf{m}_i \neq \pm \mathbf{m}_j$ for all $i \neq j$.
- ▷ By Caratheodory's theorem, there are at most n^* points among the (\mathbf{m}_i, U_i) and $\alpha_i \ge 0$ such that

$$(\mathbf{m}^{\star}, U^{\star}) = \sum_{i=1}^{n^{\star}} \alpha_i (\mathbf{m}_i, U_i), \qquad \sum_{i=1}^{n^{\star}} \alpha_i = 1.$$

- **Claim:** \exists a segment $\sigma_{t_0,\mathbf{x}_0} = [-p,p] \subset \mathbb{R}^n \times \mathcal{S}_0^n$ such that:
 - ∃ $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ with $|\mathbf{a}| = |\mathbf{b}| = \sqrt{r c}$ and $\mathbf{a} \neq \pm \mathbf{b}$, and $\lambda > 0$ such that

$$\boldsymbol{p} = \lambda \left[\left(\mathbf{a}, \frac{\mathbf{a} \otimes \mathbf{a}}{r} \right) - \left(\mathbf{b}, \frac{\mathbf{b} \otimes \mathbf{b}}{r} \right) \right].$$

Proof:

▷ By Caratheodory's theorem, there are at most n^* points among the (\mathbf{m}_i, U_i) and $\alpha_i \ge 0$ such that

$$(\mathbf{m}^{\star}, U^{\star}) = \sum_{i=1}^{n^{\star}} \alpha_i (\mathbf{m}_i, U_i), \qquad \sum_{i=1}^{n^{\star}} \alpha_i = 1.$$

- ▷ Since $(\mathbf{m}^{\star}, U^{\star}) \notin K$, there are at least two indices *i* with $\alpha_i > 0$. W.l.o.g. the coefficients are ordered such that $\alpha_1 = \max_i \alpha_i$.
- $\triangleright \text{ Let } j \text{ be such that } \alpha_j |\mathbf{m}_j \mathbf{m}_1| = \max_i \alpha_i |\mathbf{m}_i \mathbf{m}_1|.$

- **Claim:** \exists a segment $\sigma_{t_0,\mathbf{x}_0} = [-\rho, \rho] \subset \mathbb{R}^n \times \mathcal{S}_0^n$ such that:
 - ∃ $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ with $|\mathbf{a}| = |\mathbf{b}| = \sqrt{rc}$ and $\mathbf{a} \neq \pm \mathbf{b}$, and $\lambda > 0$ such that

$$\boldsymbol{p} = \lambda \left[\left(\mathbf{a}, \frac{\mathbf{a} \otimes \mathbf{a}}{r} \right) - \left(\mathbf{b}, \frac{\mathbf{b} \otimes \mathbf{b}}{r} \right) \right].$$

Proof:

 $\triangleright \text{ Let } j \text{ be such that } \alpha_j |\mathbf{m}_j - \mathbf{m}_1| = \max_i \alpha_i |\mathbf{m}_i - \mathbf{m}_1|.$

 $\triangleright \text{ Set } \mathbf{a} = \mathbf{m}_j, \ \mathbf{b} = \mathbf{m}_1. \text{ Note that } j \neq 1 \text{ and hence } \mathbf{a} \neq \pm \mathbf{b}.$

▷ We obtain that $|\mathbf{a}| = |\mathbf{b}| = \sqrt{rc}$ because $(\mathbf{m}_i, U_i) \in K$ and therefore $|\mathbf{m}_i|^2 = tr(\mathbf{m}_i \otimes \mathbf{m}_i) = r tr(\frac{c}{n} \mathbb{I}_n + U_i) = rc$ (for all $i \in \{1, ..., n^*\}$).

$$\mathbb{P} \text{ We set } \lambda = \frac{1}{2} \alpha_j \text{ and } p = \lambda \left[\left(\mathbf{a}, \frac{\mathbf{a} \otimes \mathbf{a}}{r} \right) - \left(\mathbf{b}, \frac{\mathbf{b} \otimes \mathbf{b}}{r} \right) \right]. \text{ Then } \\ p \in \mathbb{R}^n \times \mathcal{S}_0^n \text{ since } \frac{\lambda}{r} (\mathbf{a} \otimes \mathbf{a} - \mathbf{b} \otimes \mathbf{b}) \text{ is symmetric and } \\ \operatorname{tr} \left(\lambda \left(\frac{\mathbf{a} \otimes \mathbf{a}}{r} - \frac{\mathbf{b} \otimes \mathbf{b}}{r} \right) \right) = \frac{\lambda}{r} \left(|\mathbf{a}|^2 - |\mathbf{b}|^2 \right) = 0.$$

$$(\mathbf{m}^{\star}, U^{\star}) + \sigma_{t_0, \mathbf{x}_0} \subset \mathcal{U}.$$

Proof:

Additionally the following estimates hold:

Additionally the following estimates hold: Since $\alpha_j |\mathbf{m}_j - \mathbf{m}_1| = \max \alpha_i |\mathbf{m}_i - \mathbf{m}_1|$, we get that $|\mathbf{m}^{\star} - \mathbf{m}_{1}| = \left|\sum_{i=1}^{n^{\star}} \alpha_{i} \mathbf{m}_{i} - \sum_{i=1}^{n^{\star}} \alpha_{i} \mathbf{m}_{1}\right|$ $=\left|\sum_{i=1}^{n^{*}}\alpha_{i}\left(\mathbf{m}_{i}-\mathbf{m}_{1}\right)\right|$ $\leq \sum_{i=1}^{n} \alpha_i |\mathbf{m}_i - \mathbf{m}_1|$ $\leq n^* \alpha_i |\mathbf{m}_i - \mathbf{m}_1|.$

Additionally the following estimates hold: Since $\alpha_j |\mathbf{m}_j - \mathbf{m}_1| = \max_i \alpha_i |\mathbf{m}_i - \mathbf{m}_1|$, we get that

$$|\mathbf{m}^{\star} - \mathbf{m}_1| \leq n^* \alpha_j |\mathbf{m}_j - \mathbf{m}_1|.$$

Additionally the following estimates hold: Since $\alpha_j |\mathbf{m}_j - \mathbf{m}_1| = \max_i \alpha_i |\mathbf{m}_i - \mathbf{m}_1|$, we get that

$$|\mathbf{m}^{\star} - \mathbf{m}_1| \le n^* \alpha_j |\mathbf{m}_j - \mathbf{m}_1|.$$

Hence:

$$\begin{split} \lambda \left| \mathbf{a} - \mathbf{b} \right| &= \frac{1}{2} \, \alpha_j \, |\mathbf{m}_j - \mathbf{m}_1| \ge \frac{1}{2} \, \frac{1}{n^*} \, |\mathbf{m}^* - \mathbf{m}_1| \\ &\ge \frac{1}{2n^*} \left(|\mathbf{m}_1| - |\mathbf{m}^*| \right) > \frac{1}{2n^*} \left(\sqrt{r \, c} - |\mathbf{m}^*| \right) \frac{\sqrt{r \, c} + |\mathbf{m}^*|}{2 \, \sqrt{r \, c}} \\ &= \frac{1}{4n^* \sqrt{r \, c}} \left(r \, c - |\mathbf{m}^*|^2 \right), \end{split}$$

where we used that $|\mathbf{m}^{\star}|^2 \leq r n e(\mathbf{m}^{\star}, U^{\star}) < r c$.

 $\ \ \, { \Im } \ \ \, { \varepsilon } > 0 \ \ \, \exists \ \ \, { a \ \, pair} \ ({\boldsymbol m}_{t_0, {\boldsymbol x}_0}, U_{t_0, {\boldsymbol x}_0}) \in \ \ C^\infty_c \big((-1, 1) \times B_1(0) \big) \ \, { s. \ t. } \ \ \,$

• div
$$\mathbf{m}_{t_0,\mathbf{x}_0} = 0$$
 $\partial_t \mathbf{m}_{t_0,\mathbf{x}_0} + \text{div } U_{t_0,\mathbf{x}_0} = 0$

• dist
$$\left((\mathbf{m}_{t_0,\mathbf{x}_0}(t,\mathbf{x}), U_{t_0,\mathbf{x}_0}(t,\mathbf{x})), \sigma_{t_0,\mathbf{x}_0} \right) < \varepsilon$$

for all $(t,\mathbf{x}) \in (-1,1) \times B_1(0)$

•
$$\int_{\mathbb{R}} \int_{\mathbb{R}^n} \left| \mathbf{m}_{t_0, \mathbf{x}_0}(t, \mathbf{x}) \right| \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \ge c_1 \left(r \, c - \left| \mathbf{m}(t_0, \mathbf{x}_0) \right|^2 \right)$$

for a suitable constant $c_1 > 0$

•
$$\int_{\mathbb{R}^n} \mathbf{m}_{t_0,\mathbf{x}_0}(t,\mathbf{x}) \, \mathrm{d}\mathbf{x} = 0.$$

Lemma (De Lellis, Székelyhidi)

There exist linear differential operators of order 3

$$A: C_c^{\infty}(\mathbb{R}^{n+1}; \mathbb{R}) \to C_c^{\infty}(\mathbb{R}^{n+1}; \mathbb{R}^n)$$
$$B: C_c^{\infty}(\mathbb{R}^{n+1}; \mathbb{R}) \to C_c^{\infty}(\mathbb{R}^{n+1}; \mathcal{S}_0^n)$$

s. t. for all $\Phi \in C^{\infty}_{c}(\mathbb{R}^{n+1};\mathbb{R})$

$$\operatorname{div}(A\Phi) = 0, \qquad \partial_t(A\Phi) + \operatorname{div}(B\Phi) = 0.$$

Furthermore there exists a vector $\eta \in \mathbb{R}^{n+1}$ such that for all $\phi \in C^{\infty}_{c}(\mathbb{R};\mathbb{R})$

$$A\Phi = (\mathbf{a} - \mathbf{b}) \phi'''((\mathbf{x}, t) \cdot \boldsymbol{\eta})$$

$$B\Phi = \frac{1}{r} (\mathbf{a} \otimes \mathbf{a} - \mathbf{b} \otimes \mathbf{b}) \phi'''((\mathbf{x}, t) \cdot \boldsymbol{\eta})$$

where $\Phi(t, \mathbf{x}) := \phi((\mathbf{x}, t) \cdot \boldsymbol{\eta}).$

- ▷ Let $\varphi \in C_c^{\infty}((-1,1) \times B_1(0), [-1,1])$ be a cutoff function which is identically 1 inside $(-\frac{1}{2}, \frac{1}{2}) \times B_{1/2}(0)$.
- ▷ Let $\Psi \in C^{\infty}(\mathbb{R}, \mathbb{R})$ be defined by $\Psi(y) := -\lambda N^{-3} \sin(N y)$ where N > 0 is a large number to be chosen later.

Define

$$egin{aligned} \Phi(t,\mathbf{x}) &:= arphi(t,\mathbf{x}) \, \Psiig((\mathbf{x},t) \cdot oldsymbol{\eta}ig) \ \widehat{\Phi}(t,\mathbf{x}) &:= \Psiig((\mathbf{x},t) \cdot oldsymbol{\eta}ig) \ (\mathbf{m}_{t_0,\mathbf{x}_0}, U_{t_0,\mathbf{x}_0}) &:= (A\Phi, B\Phi) \ (\widehat{\mathbf{m}}, \widehat{U}) &:= (A\widehat{\Phi}, B\widehat{\Phi}ig) \end{aligned}$$

Claim: For all
$$(t, \mathbf{x}) \in (-1, 1) \times B_1(0)$$

$$\mathsf{dist}\left((\mathbf{m}_{t_0,\mathbf{x}_0}(t,\mathbf{x}),U_{t_0,\mathbf{x}_0}(t,\mathbf{x})),\sigma_{t_0,\mathbf{x}_0}\right)<\varepsilon.$$

Proof: We have

$$\begin{aligned} (\widehat{\mathbf{m}}, \widehat{U}) &= \left((\mathbf{a} - \mathbf{b}), (\mathbf{a} \otimes \mathbf{a} - \mathbf{b} \otimes \mathbf{b}) \right) \Psi^{\prime\prime\prime} ((\mathbf{x}, t) \cdot \boldsymbol{\eta}) \\ &= \left((\mathbf{a} - \mathbf{b}), (\mathbf{a} \otimes \mathbf{a} - \mathbf{b} \otimes \mathbf{b}) \right) \lambda \cos \left(N(\mathbf{x}, t) \cdot \boldsymbol{\eta} \right) \\ &= p \cos \left(N(\mathbf{x}, t) \cdot \boldsymbol{\eta} \right) \in \sigma_{t_0, \mathbf{x}_0}. \end{aligned}$$

It is not difficult to check that

$$\left\| \left(\mathbf{m}_{t_0,\mathbf{x}_0}, U_{t_0,\mathbf{x}_0} \right) - \varphi \left(\widehat{\mathbf{m}}, \widehat{U} \right) \right\|_\infty \leq c_0 \, rac{1}{N},$$

where $c_0 > 0$ is a suitable constant. We can choose N large such that $c_0 \frac{1}{N} < \varepsilon$.

Oscillatory lemma

Lemma

For all compact sets $\Gamma \subset (0, T) \times \Omega$ there exists a constant $\beta > 0$ with the following property. For any given $\mathbf{m} \in X_0$ there exists a sequence $(\mathbf{m}_k)_{k \in \mathbb{N}} \subset X_0$ such that

$$\mathbf{m}_{k} \stackrel{d}{\to} \mathbf{m}$$

$$\liminf_{k \to \infty} \|\mathbf{m}_{k}\|_{L^{2}(\Gamma)}^{2} \geq \|\mathbf{m}\|_{L^{2}(\Gamma)}^{2} + \beta \left(c \ r \ |\Gamma| - \|\mathbf{m}\|_{L^{2}(\Gamma)}^{2}\right)^{2}.$$

Define

$$n^* := \dim(\mathbb{R}^n \times S_0^n) + 1 = n + \sum_{i=1}^n i - 1 + 1 = \frac{n(n+3)}{2}.$$

Fix an arbitrary point $(t_0, \mathbf{x}_0) \in \Gamma$. For convenience we define

$$(\mathbf{m}^{\star}, U^{\star}) := (\mathbf{m}(t_0, \mathbf{x}_0), U(t_0, \mathbf{x}_0)).$$

By assumption it holds that $(\mathbf{m}^{\star}, U^{\star}) \in \mathcal{U}$.

Claim: \exists a segment $\sigma_{t_0,\mathbf{x}_0} = [-p,p] \subset \mathbb{R}^n \times \mathcal{S}_0^n$ such that:

● ∃ $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ with $|\mathbf{a}| = |\mathbf{b}| = \sqrt{rc}$ and $\mathbf{a} \neq \pm \mathbf{b}$, and $\lambda > 0$ such that

$$p = \lambda \left[\left(\mathbf{a}, \frac{\mathbf{a} \otimes \mathbf{a}}{r} \right) - \left(\mathbf{b}, \frac{\mathbf{b} \otimes \mathbf{b}}{r} \right) \right].$$

$$\begin{array}{l} \textcircled{0} \quad (\mathbf{m}^{\star}, U^{\star}) + \sigma_{t_{0}, \mathbf{x}_{0}} \subset \mathcal{U}. \\ \textcircled{0} \quad \forall \ \varepsilon > 0 \ \exists \ a \ pair \ (\mathbf{m}_{t_{0}, \mathbf{x}_{0}}, U_{t_{0}, \mathbf{x}_{0}}) \in C_{c}^{\infty}\big((-1, 1) \times B_{1}(0)\big) \ s. \ t. \\ \textcircled{0} \quad div \ \mathbf{m}_{t_{0}, \mathbf{x}_{0}} = 0 \qquad \partial_{t} \mathbf{m}_{t_{0}, \mathbf{x}_{0}} + div \ U_{t_{0}, \mathbf{x}_{0}} = 0 \\ \textcircled{0} \quad dist \ \big((\mathbf{m}_{t_{0}, \mathbf{x}_{0}}(t, \mathbf{x}), U_{t_{0}, \mathbf{x}_{0}}(t, \mathbf{x})), \sigma_{t_{0}, \mathbf{x}_{0}}\big) < \varepsilon \\ for \ all \ (t, \mathbf{x}) \in (-1, 1) \times B_{1}(0) \\ \textcircled{0} \quad \int_{\mathbb{R}} \int_{\mathbb{R}^{n}} \left|\mathbf{m}_{t_{0}, \mathbf{x}_{0}}(t, \mathbf{x})\right| \ d\mathbf{x} \ dt \ge c_{1} \left(r \ c - \left|\mathbf{m}(t_{0}, \mathbf{x}_{0})\right|^{2}\right) \\ for \ a \ suitable \ constant \ c_{1} > 0 \\ \textcircled{0} \quad \int_{\mathbb{R}^{n}} \mathbf{m}_{t_{0}, \mathbf{x}_{0}}(t, \mathbf{x}) \ d\mathbf{x} = 0. \end{array}$$

• Since (\mathbf{m}, U) is uniformly continuous, there exists $\delta_1 > 0$ s. t.

$$(\mathbf{m}(t,\mathbf{x}), U(t,\mathbf{x})) + \sigma_{t_0,\mathbf{x}_0} \subset \mathcal{U}$$

for all $(t, \mathbf{x}), (t_0, \mathbf{x}_0) \in \Gamma$ with $|t - t_0| \leq \delta_1$ and $|\mathbf{x} - \mathbf{x}_0| \leq \delta_1$.

• Step 1 yields a pair $(\mathbf{m}_{t_0,\mathbf{x}_0}, U_{t_0,\mathbf{x}_0}) \in C_c^{\infty}((-1,1) \times B_1(0))$ that fulfills

$$dist\left((\mathbf{m}_{t_0,\mathbf{x}_0}(t,\mathbf{x}), U_{t_0,\mathbf{x}_0}(t,\mathbf{x})), \sigma_{t_0,\mathbf{x}_0}\right) < \varepsilon$$

for all $(t, \mathbf{x}) \in (-1, 1) \times B_1(0)$.

Define

$$(\mathbf{m}_{t_0,\mathbf{x}_0,\delta}, U_{t_0,\mathbf{x}_0,\delta})(t,\mathbf{x}) := (\mathbf{m}_{t_0,\mathbf{x}_0}, U_{t_0,\mathbf{x}_0})\left(\frac{t-t_0}{\delta}, \frac{\mathbf{x}-\mathbf{x}_0}{\delta}\right),$$

then supp $(\mathbf{m}_{t_0,\mathbf{x}_0,\delta}, U_{t_0,\mathbf{x}_0,\delta}) \subset (t_0 - \delta, t_0 + \delta) \times B_{\delta}(\mathbf{x}_0).$

Additionally we get that

$$\mathsf{dist}\left((\mathbf{m}_{t_0,\mathbf{x}_0,\delta}(t,\mathbf{x}), U_{t_0,\mathbf{x}_0,\delta}(t,\mathbf{x})), \sigma_{t_0,\mathbf{x}_0}\right) < \varepsilon$$

for all $(t, \mathbf{x}) \in (t_0 - \delta, t_0 + \delta) \times B_{\delta}(\mathbf{x}_0)$.

 $\bullet\,$ Because ${\mathcal U}$ is open, we can choose ε so small that

$$ig(\mathbf{m}(t,\mathbf{x}),U(t,\mathbf{x})ig)+ig(\mathbf{m}_{t_0,\mathbf{x}_0,\delta}(t,\mathbf{x}),U_{t_0,\mathbf{x}_0,\delta}(t,\mathbf{x})ig)\in\mathcal{U}$$

for all $(t, \mathbf{x}) \in (t_0 - \delta, t_0 + \delta) \times B_{\delta}(\mathbf{x}_0)$.

• We obtain from step 1 that

$$egin{aligned} &\iint_{\Gamma} \left| \mathbf{m}_{t_0, \mathbf{x}_0, \delta}(t, \mathbf{x})
ight| \, \mathrm{d} \mathbf{x} \; \mathrm{d} t = \delta^{n+1} \, \int_{-1}^{1} \int_{B_1(0)} \left| \mathbf{m}_{t_0, \mathbf{x}_0}(t, \mathbf{x})
ight| \, \mathrm{d} \mathbf{x} \; \mathrm{d} t \ & \geq \delta^{n+1} \, c_1 \left(r \, c - \left| \mathbf{m}(t_0, \mathbf{x}_0)
ight|^2
ight). \end{aligned}$$

Proof of the Oscillatory lemma, Final step

There exists a radius $\delta_2 > 0$ and a constant $c_2 > 0$ such that for all $0 < \delta < \delta_2$ there are finitely many points $(t_j, \mathbf{x}_j) \in \Gamma$ with the following properties:

- The sets $(t_j \delta, t_j + \delta) \times B_{\delta}(\mathbf{x}_j)$ are contained in Γ and pairwise disjoint.
- The inequality

$$\delta^{n+1} \sum_{j} \left(r c - |\mathbf{m}(t_j, \mathbf{x}_j)|^2 \right)$$

$$\geq c_2 \iint_{\Gamma} \left(r c - |\mathbf{m}(t, \mathbf{x})|^2 \right) d\mathbf{x} dt$$

$$= c_2 \left(r c |\Gamma| - \iint_{\Gamma} |\mathbf{m}(t, \mathbf{x})|^2 d\mathbf{x} dt \right)$$

holds.

Proof of the Oscillatory lemma, Final step

- ▷ Let $\delta = \frac{1}{k}$ for $k \in \mathbb{N}$ such that $\frac{1}{k} < \min\{\delta_1, \delta_2\}$.
- ▷ Find finitely many points $(t_j, \mathbf{x}_j) \in \Gamma$ as above.
- ▷ Do the construction of step 1, 2 for each (t_j, \mathbf{x}_j) .

▷ Define
$$(\mathbf{m}_k, U_k) = (\mathbf{m}, U) + \sum_j (\mathbf{m}_{t_j, x_j, \delta}, U_{t_j, x_j, \delta}).$$

Claim: $\mathbf{m}_k \in X_0$.

Claim: $\mathbf{m}_k \stackrel{d}{\rightarrow} \mathbf{m}$.
Proof of the Oscillatory lemma, Final step

Additionally we have the following estimate

$$\begin{split} \|\mathbf{m}_{k} - \mathbf{m}\|_{L^{1}(\Gamma)} &= \iint_{\Gamma} \left| \mathbf{m}_{k}(t, \mathbf{x}) - \mathbf{m}(t, \mathbf{x}) \right| \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \\ &= \iint_{\Gamma} \left| \sum_{j} \mathbf{m}_{t_{j}, \mathbf{x}_{j}, \delta}(t, \mathbf{x}) \right| \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \\ &= \sum_{j} \iint_{\Gamma} \left| \mathbf{m}_{t_{j}, \mathbf{x}_{j}, \delta}(t, \mathbf{x}) \right| \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \\ &\geq \sum_{j} \delta^{n+1} c_{1} \left(r \, c - \left| \mathbf{m}(t_{j}, \mathbf{x}_{j}) \right|^{2} \right) \\ &\geq c_{1} \, c_{2} \left(r \, c \, |\Gamma| - \iint_{\Gamma} \left| \mathbf{m}(t, \mathbf{x}) \right|^{2} \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \right) \\ &= c_{1} \, c_{2} \left(r \, c \, |\Gamma| - \|\mathbf{m}\|_{L^{2}(\Gamma)}^{2} \right). \end{split}$$

Proof of the Oscillatory lemma, Final step

Additionally we have the following estimate

$$\|\mathbf{m}_{k}-\mathbf{m}\|_{L^{1}(\Gamma)} \geq c_{1} c_{2} \left(r c |\Gamma|-\|\mathbf{m}\|_{L^{2}(\Gamma)}^{2}\right).$$

Furthermore

$$\|\mathbf{m}_k - \mathbf{m}\|_{L^1(\Gamma)} \leq \|\mathbf{m}_k - \mathbf{m}\|_{L^2(\Gamma)} \sqrt{|\Gamma|},$$

and therefore

$$\frac{1}{|\Gamma|} \|\mathbf{m}_k - \mathbf{m}\|_{L^1(\Gamma)}^2 \leq \|\mathbf{m}_k - \mathbf{m}\|_{L^2(\Gamma)}^2$$

Putting the previous inequalities together we obtain

$$\|\mathbf{m}_{k}-\mathbf{m}\|_{L^{2}(\Gamma)}^{2} \geq \frac{c_{1}^{2}c_{2}^{2}}{|\Gamma|}\left(r\,c\,|\Gamma|-\|\mathbf{m}\|_{L^{2}(\Gamma)}^{2}\right)^{2}.$$

Proof of the Oscillatory lemma, Final step

Hence

$$\begin{split} \|\mathbf{m}_{k}\|_{L^{2}(\Gamma)}^{2} &= \|\mathbf{m} + \mathbf{m}_{k} - \mathbf{m}\|_{L^{2}(\Gamma)}^{2} \\ &= \|\mathbf{m}\|_{L^{2}(\Gamma)}^{2} + \|\mathbf{m}_{k} - \mathbf{m}\|_{L^{2}(\Gamma)}^{2} \\ &+ 2 \iint_{\Gamma} \mathbf{m}(t, \mathbf{x}) \left(\mathbf{m}_{k}(t, \mathbf{x}) - \mathbf{m}(t, \mathbf{x})\right) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \\ &\geq \|\mathbf{m}\|_{L^{2}(\Gamma)}^{2} + \frac{c_{1}^{2} c_{2}^{2}}{|\Gamma|} \left(r \, c \, |\Gamma| - \|\mathbf{m}\|_{L^{2}(\Gamma)}^{2}\right)^{2} \\ &+ 2 \iint_{\Gamma} \mathbf{m}(t, \mathbf{x}) \left(\mathbf{m}_{k}(t, \mathbf{x}) - \mathbf{m}(t, \mathbf{x})\right) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t. \end{split}$$

Since $\mathbf{m}_k \xrightarrow{d} \mathbf{m}$, the integral tends to 0 as $k \to \infty$.

$$\liminf_{k\to\infty} \|\mathbf{m}_k\|_{L^2(\Gamma)}^2 \ge \|\mathbf{m}\|_{L^2(\Gamma)}^2 + \frac{c_1^2 c_2^2}{|\Gamma|} \left(r \, c \, |\Gamma| - \|\mathbf{m}\|_{L^2(\Gamma)}^2\right)^2.$$

Outline

Introduction

2 Results

- 3 From incompressible to compressible
- 4 Non-uniqueness of solutions for the incompressible Euler equations
- Oscillatory lemma

6 Riemann Problem

7 Proof of the properties of e, \mathcal{U} and K

2-d Compressible Euler equations

$$\partial_t \varrho + \operatorname{div}(\varrho \,\mathbf{v}) = 0$$
$$\partial_t (\varrho \,\mathbf{v}) + \operatorname{div}(\varrho \,\mathbf{v} \otimes \mathbf{v}) + \nabla p = 0$$
$$\partial_t \left(\frac{1}{2} \varrho |\mathbf{v}|^2 + \varrho \, e(\varrho, p) \right) + \operatorname{div} \left[\left(\frac{1}{2} \varrho |\mathbf{v}|^2 + \varrho \, e(\varrho, p) + p \right) \mathbf{v} \right] = 0$$

Unknowns:

- density $\varrho = \varrho(t, \mathbf{x}) \in \mathbb{R}^+$
- velocity $\mathbf{v} = \mathbf{v}(t, \mathbf{x}) \in \mathbb{R}^2$

• pressure
$$p = p(t, \mathbf{x}) \in \mathbb{R}^+$$

Ideal gas:

$$e(arrho, oldsymbol{p}) = rac{1}{\gamma-1} rac{oldsymbol{p}}{arrho}$$
, where $\gamma < 3$.

Variables:

- time $t \in [0,\infty)$
- spatial variable $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$

Riemann initial data

We consider

$$(\varrho, \mathbf{v}, p)(0, x) = (\varrho^0, \mathbf{v}^0, p^0)(x) := \begin{cases} (\varrho_-, \mathbf{v}_-, p_-) & \text{if } x_2 < 0 \\ (\varrho_+, \mathbf{v}_+, p_+) & \text{if } x_2 > 0 \end{cases},$$

where $\rho_{\pm} \in \mathbb{R}^+$, $\mathbf{v}_{\pm} \in \mathbb{R}^2$ and $p_{\pm} \in \mathbb{R}^+$ are constant and $v_{-,1} = v_{+,1} = 0$.

Corresponding 1-d Riemann problem

Solve the corresponding 1-d Riemann problem

$$\partial_t \varrho + \partial_{x_2}(\varrho \, v_2) = 0,$$

$$\partial_t (\varrho \, v_2) + \partial_{x_2} (\varrho \, v_2^2 + p) = 0,$$

$$\partial_t \left(\frac{1}{2} \varrho \, v_2^2 + \varrho \, e(\varrho, p) \right) + \partial_{x_2} \left[\left(\frac{1}{2} \varrho \, v_2^2 + \varrho \, e(\varrho, p) + p \right) v_2 \right] = 0,$$

$$(\varrho, v_2, p)(0, x) = (\varrho^0, v_2^0, p^0)(x) := \begin{cases} (\varrho_-, v_{-,2}, p_-) & \text{if } x_2 < 0 \\ (\varrho_+, v_{+,2}, p_+) & \text{if } x_2 > 0 \end{cases}$$

J. Smoller. Shock waves and reaction-diffusion equations. New York: Springer-Verlag, 1967

C. M. Dafermos. *Hyperbolic conservation laws in continuum physics.* 4th ed. Grundlehren der mathematischen Wissenschaften. Berlin, Heidelberg: Springer-Verlag, 2016

Solution of the corresponding 1-d Riemann problem

Constant states seperated by three waves

- 1-wave: Either a shock or a rarefaction wave
- 2-wave: Contact discontinuity
- 3-wave: Either a shock or a rarefaction wave

Result

Theorem

We assume that the initial data $\varrho_{\pm} \in \mathbb{R}^+$, $\mathbf{v}_{\pm} \in \mathbb{R}^2$, $p_{\pm} \in \mathbb{R}^+$ fulfill $v_{-,1} = v_{+,1} = 0$ and are such that the 1-d self-similar solution consists of

- a 1-shock, a 2-contact discontinuity and a 3-shock or
- a 1-shock and a 3-shock.

Then there exist infinitly many entropy solutions.

Definition: fan partition

Let $\mu_0 < \mu_1 < \mu_2$ real numbers. A fan partition of $(0, \infty) \times \mathbb{R}^2$ is a set of 4 open sets $\Omega_-, \Omega_1, \Omega_2, \Omega_+$ of the form

$$\begin{split} \Omega_{-} &= \{(t, \mathbf{x}) : t > 0 \text{ and } x_2 < \mu_0 t\};\\ \Omega_{1} &= \{(t, \mathbf{x}) : t > 0 \text{ and } \mu_0 t < x_2 < \mu_1 t\};\\ \Omega_{2} &= \{(t, \mathbf{x}) : t > 0 \text{ and } \mu_1 t < x_2 < \mu_2 t\};\\ \Omega_{+} &= \{(t, \mathbf{x}) : t > 0 \text{ and } x_2 > \mu_2 t\}. \end{split}$$

Definition: fan partition

- Definition: fan partition
- \triangleright Define a piecewise constant fan subsolution ($\overline{\varrho}, \overline{\mathbf{v}}, \overline{p}$)

- Definition: fan partition
- \triangleright Define a piecewise constant fan subsolution $(\overline{\varrho}, \overline{\mathbf{v}}, \overline{p})$
- \triangleright Apply convex integration on Ω_1, Ω_2 to obtain $\underline{\textbf{v}}_1, \underline{\textbf{v}}_2$

Proposition

Let $(\widetilde{\mathbf{v}}, \widetilde{U}) \in \mathbb{R}^2 \times S_0^2$ and c > 0 such that $\widetilde{\mathbf{v}} \otimes \widetilde{\mathbf{v}} - \widetilde{U} < \frac{c}{2} \mathbb{I}_2$. Furthermore let $\Omega \subset \mathbb{R} \times \mathbb{R}^2$ open. Then there exist infinitely many maps $(\underline{\mathbf{v}}, \underline{U}) \in L^{\infty}(\mathbb{R} \times \mathbb{R}^2, \mathbb{R}^2 \times S_0^2)$ with the following properties.

 $\triangleright \mathbf{v}$ and \underline{U} vanish outside Ω .

▷ div
$$\mathbf{v} = \mathbf{0}$$
 and $\partial_t \mathbf{v} + \text{div } \underline{U} = \mathbf{0}$ in the sense of distributions.

$$> (\widetilde{\mathbf{v}} + \underline{\mathbf{v}}) \otimes (\widetilde{\mathbf{v}} + \underline{\mathbf{v}}) - (\widetilde{U} + \underline{U}) = \frac{c}{2} \mathbb{I}_2 \text{ a.e. on } \Omega.$$

C. De Lellis E. Chiodaroli and O. Kreml. "Global ill-posedness of the isentropic system of gas dynamics". In: *Comm. Pure Appl. Math.* 68.7 (2015), pp. 1157–1190

- Definition: fan partition
- \triangleright Define a piecewise constant fan subsolution $(\overline{\varrho}, \overline{\mathbf{v}}, \overline{p})$
- \triangleright Apply convex integration on Ω_1, Ω_2 to obtain $\underline{\mathbf{v}}_1, \underline{\mathbf{v}}_2$

- Definition: fan partition
- ▷ Define a piecewise constant fan subsolution $(\overline{\varrho}, \overline{\mathbf{v}}, \overline{p}, \overline{U}, \overline{c})$
- ▷ Apply convex integration on Ω_1, Ω_2 to obtain $\underline{\mathbf{v}}_1, \underline{\mathbf{v}}_2$

- Definition: fan partition
- ▷ Define a piecewise constant fan subsolution $(\overline{\varrho}, \overline{\mathbf{v}}, \overline{p}, \overline{U}, \overline{c})$
- ▷ Apply convex integration on Ω_1, Ω_2 to obtain $\underline{\mathbf{v}}_1, \underline{\mathbf{v}}_2$
- ▷ Define the fan subsolution such that $(\overline{\rho}, \overline{\mathbf{v}} + \underline{\mathbf{v}}_1 + \underline{\mathbf{v}}_2, \overline{\rho})$ is a solution

Definition: admissible fan subsolution (1)

An adm. fan subsolution consists of 5 piecewise constant functions $(\overline{\varrho}, \overline{\mathbf{v}}, \overline{p}, \overline{U}, \overline{c}) : (0, \infty) \times \mathbb{R}^2 \to (\mathbb{R}^+ \times \mathbb{R}^2 \times \mathbb{R}^+ \times S_0^2 \times \mathbb{R}^+)$, which satisfy the following properties:

 \triangleright There exists a fan partition $\Omega_-, \Omega_1, \Omega_2, \Omega_+$ such that

$$\left(\overline{\varrho}, \overline{\mathbf{v}}, \overline{p}, \overline{U}, \overline{c}\right) = \begin{cases} \left(\varrho_{\pm}, \mathbf{v}_{\pm}, \rho_{\pm}, U_{\pm}, c_{\pm}\right) & \text{on } \Omega_{\pm} \\ \left(\varrho_{1}, \mathbf{v}_{1}, \rho_{1}, U_{1}, c_{1}\right) & \text{on } \Omega_{1} \\ \left(\varrho_{2}, \mathbf{v}_{2}, \rho_{2}, U_{2}, c_{2}\right) & \text{on } \Omega_{2} \end{cases}$$

where $U_{\pm} = \mathbf{v}_{\pm} \otimes \mathbf{v}_{\pm} - \frac{1}{2} |\mathbf{v}_{\pm}|^2 \mathbb{I}_2$ and $c_{\pm} = |\mathbf{v}_{\pm}|^2$.

The following inequalities hold in the sense of definiteness

$$\mathbf{v}_1\otimes\mathbf{v}_1-\mathcal{U}_1<rac{1}{2}c_1\,\mathbb{I}_2,\qquad \mathbf{v}_2\otimes\mathbf{v}_2-\mathcal{U}_2<rac{1}{2}c_2\,\mathbb{I}_2.$$

Definition: admissible fan subsolution (2)

▷ The following identities hold in the sense of distributions:

$$\partial_t \overline{\varrho} + \operatorname{div}(\overline{\varrho} \, \overline{\mathbf{v}}) = 0,$$

$$\partial_t (\overline{\varrho} \, \overline{\mathbf{v}}) + \operatorname{div}(\overline{\varrho} \, \overline{U}) + \nabla \left(\overline{p} + \frac{1}{2} \overline{\varrho} \, \overline{c}\right) = 0,$$

$$\partial_t \left(\frac{1}{2} \, \overline{\varrho} \, \overline{c} + \frac{1}{\gamma - 1} \, \overline{p}\right) + \operatorname{div} \left[\left(\frac{1}{2} \, \overline{\varrho} \, \overline{c} + \left(\frac{1}{\gamma - 1} + 1\right) \overline{p}\right) \overline{\mathbf{v}} \right] = 0.$$

▷ The entropy inequality is fulfilled in the sense of distributions:

$$\partial_t \Big(\overline{arrho} \, s(\overline{arrho}, \overline{arphi}) \Big) + {
m div} \left(\overline{arrho} \, s(\overline{arrho}, \overline{arphi}) \, \overline{oldsymbol v} \Big) \ \ge \ 0$$

Condition for the existence of infinitely many solutions

Proposition

Existence of an admissible fan subsolution Existence of infinitely

many entropy solutions

Results

1-wave	2-wave	3-wave	1-wave	2-wave	3-wave
-	_	-	-	contact	_
-	-	shock	-	contact	shock
-	-	raref.	-	contact	raref.
shock	-	-	shock	contact	-
shock	-	shock	shock	contact	shock
shock	-	raref.	shock	contact	raref.
raref.	-	-	raref.	contact	-
raref.	-	shock	raref.	contact	shock
raref.	-	raref.	raref.	contact	raref.

Question

Is the 1-d self-similar solution the *unique* entropy solution to the 2-d problem?

Results

1-wave	2-wave	3-wave	1-wave	2-wave	3-wave
-	-	-	-	contact	-
-	-	shock	-	contact	shock
-	-	raref.	-	contact	raref.
shock	-	-	shock	contact	-
shock	-	shock	shock	contact	shock
shock	-	raref.	shock	contact	raref.
raref.	-	-	raref.	contact	-
raref.	-	shock	raref.	contact	shock
raref.	-	raref.	raref.	contact	raref.

non-unique

O. Kreml V. Mácha H. Al Baba C. Klingenberg and S. Markfelder. "Non-uniqueness of admissible weak solutions to the Riemann problem for the full Euler system in 2D". In: *submitted* (2018). arXiv: 1805.11354 Results

1-wave	2-wave	3-wave	1-wave	2-wave	3-wave
-	-	-	-	contact	-
-	-	shock	-	contact	shock
-	-	raref.	-	contact	raref.
shock	-	-	shock	contact	-
shock	-	shock	shock	contact	shock
shock	-	raref.	shock	contact	raref.
raref.	-	-	raref.	contact	-
raref.	-	shock	raref.	contact	shock
raref.	-	raref.	raref.	contact	raref.

non-unique unique

G.-Q. Chen and J. Chen. "Stability of rarefaction waves and vacuum states for the multidimensional Euler equations". In: *J. Hyperbolic Differ. Equ.* 4.1 (2007), pp. 105–122

Results for the isentropic Euler equations

1-wave	2-wave	
_	-	
-	shock	
-	raref.	
shock	-	
shock	shock	
shock	raref.	
raref.	-	
raref.	shock	
raref.	raref.	

Question

Is the 1-d self-similar solution the *unique* entropy solution to the 2-d problem?

Results for the isentropic Euler equations

non-unique unique

References:

G.-Q. Chen and J. Chen. "Stability of rarefaction waves and vacuum states for the multidimensional Euler equations". In: *J. Hyperbolic Differ. Equ.* 4.1 (2007), pp. 105–122

E. Chiodaroli and O. Kreml. "On the energy dissipation rate of solutions to the compressible isentropic Euler system". In: *Arch. Ration. Mech. Anal.* 214.3 (2014), pp. 1019–1049

C. Klingenberg and S. Markfelder. "The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock". In: *Arch. Rational Mech. Anal.* 227.3 (2018), pp. 967–994

Outline

Introduction

2 Results

- 3 From incompressible to compressible
- 4 Non-uniqueness of solutions for the incompressible Euler equations
- Oscillatory lemma
- 6 Riemann Problem

7 Proof of the properties of e, \mathcal{U} and K