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Abstract
These notes are meant to accompany a short course on mathematical programs with complementarity
constraints (MPCC) and related problem classes given at the winter school Modern Methods in Nonsmooth
Optimization. Since this course consists of only four lectures, we focus on only a few key aspects of
the theoretical properties of this problem class and a few solution algorithms and provide references for
alternative approaches. The contents covered in this lecture are admittedly partly chosen due to personal
preference, but should also provide a good first step into the world of MPCCs.

As general references for mathematical programs with complementarity constraints, I would like to
mention the books [22] by Luo, Pang, and Ralph and [26] by Outrata, Kocvara, and Zowe. But of course
there are also many other books, which at least partially cover MPCCs such as [9], which focuses on
general bilevel programs, or [17], which provides Newton-type methods, which can also be applied to
MPCCs.

For a more detailed background on the tools from variational analysis, I would like to mention the
book [27] by Rockafellar and Wets, the books [23, 24] from Mordukhovich, [8] from Clarke and [29] by
Schirotzek.
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1 Introduction

MPCC
What?
Why?

Examples

Challenges

Back-
ground

Notation

Throughout this lecture we consider general mathematical programs with complementarity constraints
(MPCC), which are of the form

minx f (x) s.t. g(x)≤ 0, h(x) = 0,
0≤ G(x)⊥ H(x)≥ 0, (1.1)

where

• x ∈ Rn is the finite dimensional optimization variable,

• f : Rn→ R is the objective function,

• g : Rn→ Rm and h : Rn→ Rp are the standard inequality and equality constraints

• and G, H : Rn→ Rq are the complementarity constraints.

Here, the shorthand 0≤ G(x)⊥ H(x)≥ 0 is an abbreviation for

Gi(x)≥ 0, Hi(x)≥ 0, Gi(x)Hi(x) = 0 ∀i = 1, . . . , q.

Consequently, MPCCs can be seen standard nonlinear programs (NLP), but the complementarity con-
straints have a special structure, which prevents us from directly applying most of the classical results.

0 1
Gi(x)

1

Hi(x)

Figure 1.1: Structure of the feasible set of a complementarity constraint
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The structure of the feasible set of one complementarity constraint is depicted in Figure 1.1. As one can
see, at a feasible point x∗ of the MPCC each complementarity constraint belongs to one of the following
three cases:

I0+(x
∗) := {i = 1, . . . , q | Gi(x

∗) = 0, Hi(x
∗)> 0},

I+0(x
∗) := {i = 1, . . . , q | Gi(x

∗)> 0, Hi(x
∗) = 0},

I00(x
∗) := {i = 1, . . . , q | Gi(x

∗) = 0, Hi(x
∗) = 0}.

In Section 1.1 we provide some examples for MPCCs, in Section 1.2 we discuss why MPCCs need spe-
cial treatment, Section 1.3 provides some background knowledge needed later and Section 1.4 collects
the notation used throughout these notes.

1.1 Examples and Applications

We begin by introducing some problem classes, which are closely related to MPCCs. Then we describe
how these problems can be formulated as an MPCC. Finally, we provide an concrete application for
MPCCs.

Class: Mathematical Programs with Equilibrium Constraints
MPCCs are closely related to the class of mathematical programs with equilibrium constraints (MPEC).

MPECs are optimization problems of the form

min
x ,y

f (x , y) s.t. x ∈ X , y ∈ S(x),

where X ⊆ Rn is a nonempty feasible set and f : Rn ×RN → R is the objective function. The possibly
set-valued map S : Rn ⇒ RN describes the solution set of the equilibrium constraint and is often given
only implicitly.

As we will see below, MPECs can often be reformulated as MPCCs. And since“ MPEC” is much easier to
pronounce than “MPCC”, optimization problems with complementarity constraints are often also called
MPECs in literature.

Class: Bilevel Optimization Problems

miny F(x , y) s.t. y ∈ Y (x)

“min′′x f (x , y) s.t. x ∈ X , y ∈ S(x)

Figure 1.2: Bilevel Problem

One example for an MPEC are bilevel optimization problems, where

S(x) = argmin
y
{F(x , y) | y ∈ Y (x)}

is the solution set of a lower level optimization problem

min
y

F(x , y) s.t. y ∈ Y (x)

6 1 Introduction



with the variable y and the parameter x . Then the map S(x) is usually not known explicitly.
In case the map S(x) is not single-valued, i.e. y is not uniquely determined by x , we have to differ-

entiate whether the variables x and y are controlled by the same entity. If yes, we can use the so called
optimistic formulation

min
x ,y

f (x , y) s.t. x ∈ X , y ∈ S(x).

If not, it can make more sense to consider the pessimistic formulation

min
x

max
y

f (y, x) s.t. x ∈ X , y ∈ S(x),

which is harder to solve.

Class: Stackelberg Problems

minyi
Fi(x , yi, y−i) s.t. yi ∈ Yi(x , y−i) · · ·

“ min′′x f (x , y) s.t. x ∈ X , y ∈ S(x)

Figure 1.3: Stackelberg Problem

The bilevel optimization problem can be seen as a single-leader-single-follower problem, where the
entity controlling x and minimizing f is the leader and the entity controlling y and minimizing F is the
follower, who is reacting to the choice of x .

In case there is more than one follower and the followers do not only depend on the leader but also
influence each other, we have to consider a game on the lower level, i.e. each follower i solves

min
yi

Fi(x , yi, y−i) s.t. yi ∈ Yi(x , y−i),

where yi is the variable of player i and y−i collects the variables of all other players on the lower level.
The set-valued map S could then be defined as the set of all Nash equilibria for a given value of x .

Such single-leader-multi-follower problems are also called Stackelberg problems.

Reformulation: Lower Level to Complementarity Constraint
Assume that the feasible set Y (x) of the lower level

min
y

F(x , y) s.t. y ∈ Y (x)

is given by some standard constraints, i.e.

Y (x) = {y | G(x , y)≤ 0, H(x , y) = 0}.

Then we know under constraint qualifications such as Abadie CQ or LICQ that an element y ∈ S(x) =
argminy{F(x , y) | y ∈ Y (x)} has to satisfy the KKT conditions

∇y F(x , y) +∇y G(x , y)λ+∇y H(x , y)µ= 0,

0≤ λ⊥ G(x , y)≤ 0,

H(x , y) = 0.

1.1 Examples and Applications 7



Conversely, the KKT conditions are sufficient for an element of S(x) if f , Gi are convex and H is affine
linear in y . Thus, under suitable assumptions, we can reformulate a bilevel problem as the MPCC

min
x ,y,λ,µ

f (x , y) s.t. x ∈ X ,

∇y F(x , y) +∇y G(x , y)λ+∇y H(x , y)µ= 0,

0≤ λ⊥ −G(x , y)≥ 0,

H(x , y) = 0.

Application: Contest Design
Consider a lottery, where every player i ∈ {1, . . . , N} has to decide on an input yi ≥ 0 and can win a

price of value v > 0 with probability
wi yi

∑N
j=1 w j y j

,

where w j > 0 are some given weights. In case w j = 1 for all players, the winning probability is exactly
equal to the relative input of each player. Thus, every player i maximizes the objective function

Fi(w, yi, y−i) = v
wi yi

∑N
j=1 w j y j

− ci yi,

where ci > 0 describes the cost for the input of i.
Once can show that this game has exactly one Nash equilibrium for all given weights w. Thus, the

map w 7→ S(w) collecting all Nash equilibria for a given w is single-valued.
Now consider the contest organizer, who can choose the weights w in order to optimize the objective

max
w

f (w, y) s.t. w≥ 0, y ∈ S(w).

One possible such objective would be to maximize the total input into the lottery, i.e.

f (w, y) =
M
∑

j=1

y j.

This is an example for a Stackelberg problem, where one can obtain an explicit formula for the solution of
the lower level Nash game. But alternatively one can also reformulate the lower level using a variational
inequality or KKT conditions.

1.2 Challenges

Let us come back to the general MPCC

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

0≤ G(x)⊥ H(x)≥ 0.

Then we can obviously rewrite this equivalently as the following nonlinear program (MPCC-NLP)

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

−G(x)≤ 0,−H(x)≤ 0, G(x) ◦H(x) = 0.

This raises the question: Why can we not solve MPCCs by just applying the standard theory from
nonlinear optimization?

To answer this question, consider the following example from [28]:
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Example 1.1. Consider the MPCC

min
x∈R3

x1 + x2 − x3 s.t. −4x1 + x3 ≤ 0,

−4x2 + x3 ≤ 0,

0≤ x1 ⊥ x2 ≥ 0.

This is an MPCC with the simplest possible complementarity constraint and two additional linear in-
equality constraints as well as a linear objective function. Since

x3 ≤ 4 min{x1, x2}= 0,

the global minimum is x∗ = (0,0, 0). Not let us check the KKT conditions at x∗. To do so, we have to
examine if there exist multipliers λ ∈ R4

+, µ ∈ R such that





1
1
−1



+λ1





−4
0
1



+λ2





0
−4
1



+λ3





−1
0
0



+λ4





0
−1
0



+µ





0
0
0



=





0
0
0



 .

These three equations yield

λ3 = 1− 4λ1 ≥ 0,

λ4 = 1− 4λ2 ≥ 0,

λ1 +λ2 = 1, where λ1 ≥ 0,λ2 ≥ 0,

which is obviously not possible. Thus, the global minimum of the MPCC is no KKT point.

If minima are no KKT points, then our standard first order optimality condition from nonlinear opti-
mization is not necessary. Since solution algorithms for NLPs usually converge to KKT points, we thus
might miss the solution of an MPCC if we apply a standard solution algorithm.

We know that a local solution of an NLP is a KKT point if a constraint qualification (CQ) holds there.
Thus the special structure of the complementarity constraints seems to cause problems with constraint
qualifications. We illustrate the cause of this problem on the following example:

Example 1.2. Consider the simplest possible MPCC

min
x∈R2

f (x) s.t. 0≤ x1 ⊥ x2 ≥ 0.

and the corresponding MPCC-NLP

min
x∈R2

f (x) s.t. − x1 ≤ 0,−x2 ≤ 0, x1 x2 = 0.

Now we want to verify if LICQ holds at an arbitrary feasible point x . Let us look at the three possible
cases separately:

If x1 = 0 and x2 > 0, the gradients of the active constraints are (−1, 0)T and (x2, 0)T and thus linearly
dependent. If x1 > 0 and x2 = 0, then the gradients of the active constraints are (0,−1) and (0, x1)
and also linearly dependent. If x1 = x2 = 0, all three constraints are active with the gradients (−1, 0)T ,
(0,−1)T and (0,0)T and also linearly dependent.

1.2 Challenges 9



x∗
x1

x2

X

d

x k

x∗
x1

x2 TX (x∗)

Figure 1.4: Illustration of the tangent cone

This problem is typical for MPCCs, in fact one can show that at every feasible point of an MPCC both
LICQ and MFCQ are violated, see Exercise 1.2. While LICQ is a popular constraint qualification because
it can easily be verified, it is one of the strongest constraint qualifications. So maybe weaker constraint
qualifications have a better chance at being satisfied.

Recall that for X ⊆ Rn nonempty and x∗ ∈ X the (Bouligand) tangent cone is defined as

TX (x
∗) := {d ∈ Rn | ∃x k→X x∗, tk ≥ 0 : tk(x

k − x∗)→ d},

see Figure 1.4 for an illustration.
In case

X = {x ∈ Rn | g(x)≤ 0, h(x) = 0}

with g : Rn → Rm and h : Rn → Rp continuously differentiable, the set of active inequalities at x∗ ∈ X is
defined as

Ig(x
∗) := {i = 1, . . . , m | gi(x

∗) = 0}

and the linearized tangent cone as

LX (x
∗) := {d ∈ Rn | ∇gi(x

∗)T d ≤ 0 ∀i ∈ Ig(x
∗),

∇h(x∗)T d = 0}.

Note that, although the notation does not indicate this, the linearized tangent cone to X depends on the
description of X , i.e. on g and h.

Also recall that the polar cone to a nonempty set C ⊆ Rn is defined as

C◦ := {w ∈ Rn | wT d ≤ 0 ∀d ∈ C}.

Then the weakest constraint qualifications usually used to ensure that local minima are KKT points are:

• Abadie CQ: TX (x∗) = LX (x∗)

• Guignard CQ: TX (x∗)◦ = LX (x∗)◦

Let us see, if these weaker CQs are satisfied in Example 1.2.
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Example 1.3. If x1 = 0 and x2 > 0, the gradients of the active constraints are (−1, 0)T and (x2, 0)T and
thus the linearized tangent cone is given by

LX (x) = {d ∈ R2 | d1 = 0}.

Since the tangent cone in these points is {0} ×R, Abadie CQ and thus also Guignard CQ holds there.
If x1 > 0 and x2 = 0, then the gradients of the active constraints are (0,−1) and (0, x1) and thus

LX (x) = {d ∈ R2 | d2 = 0}= TX (x).

If x1 = x2 = 0, all three constraints are active with the gradients (−1, 0)T , (0,−1)T and (0, 0)T and
also linearly dependent. The resulting cones are

LX (x) = {d ∈ R2 | d1 ≥ 0, d2 ≥ 0} ) TX (x) = {d ∈ R2 | 0≤ d1 ⊥ d2 ≥ 0}.

Consequently Abadie CQ is violated in x = (0, 0). However, for the polar cones we obtain

LX (x)
◦ = {w ∈ R2 | w1 ≥ 0, w2 ≥ 0}= TX (x)

◦,

i.e. Guignard CQ holds.

The behavior of this example is typical for MPCCs. If we have a biactive complementarity constraint,
i.e. Gi(x∗) = Hi(x∗), the feasible set and the tangent cone are usually nonconvex. On the other hand, the
linearized tangent cone is polyhedral and thus always convex. Thus, Abadie CQ might not be satisfied.
As we have seen in the previous example, even if Abadie CQ is violated, Guignard CQ still has a chance
to hold. But as Example 1.2 shows, there are also very simple MPCCs, where Guignard CQ is violated at
the solution.

If we cannot ensure that a constraint qualification holds at local minima, we cannot rely on the KKT
conditions as necessary optimality conditions. But then we know that the Fritz-John conditions are
necessary optimality conditions even without a constraint qualification. However, if we try to apply the
standard Fritz-John conditions to the NLP formulation of the MPCC, we see that they are satisfied in
every feasible point, see Exercise 1.3 and thus not a very useful optimality conditions.

Thus, if we want to solve MPCCs, we first have to derive suitable optimality conditions and then can
develop tailored algorithms. We can also try to apply standard solvers directly, which sometimes works,
but we should be aware of the potential problems.

1.3 Background

Let us recall some concepts, which will be used later.

1.3.1 Bouligand and Clarke Subdifferential

In this section, we consider locally Lipschitz continuous maps

F : Rn→ Rm.

To define a subdifferential for F we use the following, famous observation:

Theorem 1.4 (Rademacher’s Theorem). Let U ⊆ Rn be open and F : U → Rm be locally Lipschitz continu-
ous. Then F is differentiable almost everywhere, i.e. the set

{x ∈ U | F ′(x) does not exist}

is a set of (Lebesgue) measure zero.

1.3 Background 11



This motivates the following definitions:

Definition 1.5. Let F : Rn→ Rm be locally Lipschitz continuous. Define the set

DF := {x ∈ Rn | F is differentiable in x}.

(a) Then for x∗ ∈ Rn the set

∂ B F(x∗) := {M ∈ Rm×n | ∃(x k)k→DF
x∗ : F ′(x k)→ M}

is called the Bouligand subdifferential of F .

(b) For x∗ ∈ Rn the set

∂ C F(x∗) := conv∂ B F(x∗)

is called the Clarke subdifferential of F . Its elements are called (Clarke’s) generalized Jacobians.

Beware: According to the previous definition, the elements of the Bouligand or Clarke subdifferential
of a function f : Rn→ R are row vectors, i.e. have dimension 1× n. However, for functions mapping to
R one sometimes also transposes the Bouligand and Clarke subdifferential and then speaks of (Clarke’s)
generalized gradient.

Before we collect useful properties of these subdifferentials, some examples:

• Consider the absolute value function f : R → R, f (x) = |x |. Then f is even globally Lipschitz
continuous with L = 1 and Df = R \ {0}. Thus

∂ B f (x) =







{−1} if x < 0,

{−1,1} if x = 0,

{1} if x > 0.

The Clarke subdifferential differs only in case x = 0 with

∂ C f (0) = [−1, 1].

• Consider the maximum function f : R→ R, f (x) = max{x , 0}. Then f is even globally Lipschitz
continuous with L = 1 and Df = R \ {0}. Thus

∂ B f (x) =







{0} if x < 0,

{0,1} if x = 0,

{1} if x > 0.

The Clarke subdifferential differs only in case x = 0 with

∂ C f (0) = [0,1].

• Consider the minimum function f : R2→ R, f (a, b) =min{a, b}. Then f is even globally Lipschitz
continuous with L = 1 and Df = R2 \ {(a, a) | a ∈ R}. Thus

∂ B f (a, b) =







{(1,0)} if a < b,

{(1,0), (0, 1)} if a = b,

{(0,1)} if a > b.

The Clarke subdifferential differs only in case a = b with

∂ C f (a, a) = conv{(1, 0), (0,1)}.
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Some more examples for subdifferentials of commonly used vector norms are considered in Exercise 1.4.
As one might expect from the definition, the Bouligand and the Clarke subdifferential are closely

related to the gradient, whenever it exists.

Proposition 1.6. Let F : Rn → Rm be locally Lipschitz continuous and x∗ ∈ Rn. If F is continuously
differentiable around x∗, then

∂ C F(x∗) = ∂ B F(x∗) = {∇F(x∗)}.

Proof. For all x k close to x∗ the Jacobian F ′(x k) exists and converges to F ′(x∗). Thus ∂ B F(x∗) =
{F ′(x∗)}. Then the convex hull does not change anything, i.e. ∂ C F(x∗) = ∂ B F(x∗) = {∇F(x∗)}.

The following example illustrates that differentiability of f alone is not enough to guarantee
∂ C f (x∗) = {∇ f (x∗)}.

Example 1.7. Consider f : R→ R with f (x) = x2 sin( 1
x ). Then f is differentiable on Rn with

f ′(x) =

¨

2x sin( 1
x )− cos( 1

x ) if x 6= 0,

0 if x = 0.

Since f ′ is continuous on R \ {0}, the function f is locally Lipschitz-continuous on R \ {0}. One can also
show that f is locally Lipschitz continuous around 0. For all x 6= 0 we know

∂ C f (x) = {∇ f (x)}= {2x sin(
1
x
)− cos(

1
x
)}.

However, at x = 0, we have

∂ C f (0) = ∂ B f (0) = [−1,1].

This can be verified directly using the definition of the subdifferentials.

Now let us collect some useful properties of the subdifferentials.

Lemma 1.8. Let F : Rn → Rm be locally Lipschitz continuous and x∗ ∈ Rn with local Lipschitz constant
L > 0. Then the following holds:

(a) ∂ B F(x∗) is nonempty and compact with ‖M‖ ≤ L for all M ∈ ∂ B F(x∗).

(b) The map x 7→ ∂ B F(x) is upper semicontinuous at x∗, i.e. for all ε > 0 exists r > 0 such that

∂ B F(x) ⊆ ∂ B F(x∗) + Bε(0) ∀x ∈ Br(x
∗).

This together with (a) implies that x 7→ ∂ B F(x) is locally bounded.

(c) ∂ C F(x∗) is nonempty, convex and compact with ‖M‖ ≤ L for all M ∈ ∂ C F(x∗).

(d) The map x 7→ ∂ C F(x) is upper semicontinuous and locally bounded.

When it comes to computing the subdifferential of a given function, it is often useful to be able to use
calculus rules. The Clarke subdifferential of a function f : Rn→ R can be defined via a support function

f ◦(x; d) := limsup
y→x ,t↓0

f (y + td)− f (y)
t

,

which allows to obtain fairly extensive collection of calculus rules. When we are interested in the case
F : Rn → Rm, we have to rely on the definition of the Clarke subdifferential via Rademacher’s theorem,
which complicates the proof of calculus rules. For this reason in the subsequent theorem we have to
work with something similar to directional derivatives.

1.3 Background 13



Theorem 1.9. Let H : Rn → Rm and G : Rm → Rp be locally Lipschitz continuous and x∗ ∈ Rn. Then
F := G ◦H is locally Lipschitz continuous and for all d ∈ Rn

(a)

∂ C F(x∗)d ⊆ conv(∂ C G(H(x∗))∂ C H(x∗)d) = conv(∂ C G(H(x∗))∂ C H(x∗))d;

(b) if G is continuously differentiable around H(x∗)

∂ C F(x∗)d = G′(H(x∗))∂ C H(x∗)d;

(c) if H is continuously differentiable around x∗

∂ C F(x∗)d = ∂ C G(H(x∗))H ′(x∗)d.

One can use more and better calculus rules for maps f : Rn→ R:

Theorem 1.10. Let f , f1, f2 : Rn → R, G : Rm → Rn be locally Lipschitz continuous and x ∈ Rn, y ∈ Rm.
Then the following holds:

(a) ∂ C(c f )(x) = c∂ C f (x) for all c ∈ R.

(b) ∂ C( f1 + f2)(x) ⊆ ∂ C f1(x) + ∂ C f2(x).

(c) ∂ C( f1 · f2)(x) ⊆ f2(x)∂ C f1(x) + f1(x)∂ C f2(x).

(d) ∂ C( f1
f2
)(x) ⊆ f2(x)∂ C f1(x)− f1(x)∂ C f2(x)

f2(x)2
if f2(x) 6= 0.

(e) ∂ ( f ◦G)(y) ⊆ conv(∂ C f (G(y)) ·∂ C G(y)) with equality if f is continuously differentiable or f convex
and G continuously differentiable.

In general, the inclusions in the calculus rules can be strict. Consider for example f1(x) = |x |, f2(x) =
−|x | and x∗ = 0. Then ( f1 + f2)(x)≡ 0 and thus

∂ C( f1 + f2)(0) = {0}.
On the other hand

∂ C f1(0) + ∂
C f2(0) = [−1,1] + [−1, 1] = [−2,2].

Remark 1.11 (Optimality Conditions). Note that the example f (x) = |x | illustrates that the Clarke subd-
ifferential has similar problems as the gradient, when it comes to characterizing local minima. While one
can show that every local minimum x∗ satisfies 0 ∈ ∂ C f (x∗), so does every local maximum. And analo-
gously to the gradient of a nonconvex function, the reverse implication does not hold, i.e. 0 ∈ ∂ C f (x∗)
does not imply that x∗ is a local maximum or minimum.

Proposition 1.12. Let f : Rn→ R be locally Lipschitz-continuous and x∗ ∈ Rn. Then the following holds:

(a) ∂ C(− f )(x∗) = −∂ C f (x∗).

(b) If x∗ is a local minimum or maximum of f , we have 0 ∈ ∂ C f (x∗).

For constrained optimization problems

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0

one can prove an analogue the the Fritz-John conditions known from nonlinear optimization.

Theorem 1.13 (Fritz-John Conditions of Clarke). Let f : Rn → R, g : Rn → Rm and h : Rn → Rp be
locally Lipschitz-continuous . Let x∗ be a local minimum of f on

Z := {x ∈ Rn | g(x)≤ 0, h(x) = 0}.
Then there exist multipliers α ≥ 0, λ ∈ Rm

+ , µ ∈ Rp such that (α,λ,µ) 6= (0,0, 0), λi = 0 for all i /∈ I(x∗)
and

0 ∈ α∂ C f (x∗) +
m
∑

i=1

λi∂
C gi(x

∗) +
p
∑

i=1

µi∂
Chi(x

∗)
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1.3.2 Fréchet and Limiting Normal Cones

Let us consider a nonempty feasible set Z ⊆ Rn and a point x∗ ∈ Z . Then we have already seen that the
Bouligand tangent cone at x∗ is defined as

TZ(x
∗) := {d ∈ Rn | ∃(x k)k →Z x∗, (tk)k ≥ 0 : tk(x

k − x∗)→ d}.

If we want to work with constraint qualifications such as Guignard CQ, we need to compute the corre-
sponding polar cone

TZ(x
∗)◦ := {w ∈ Rn | wT d ≤ 0 ∀d ∈ TZ(x

∗)}.

Definition 1.14. Consider Z ⊆ Rn nonempty and x∗ ∈ Z . Then the Fréchet normal cone of Z at x∗ is
defined as

N F
Z (x

∗) := TZ(x
∗)◦ = {w ∈ Rn | wT d ≤ 0 ∀d ∈ TZ(x

∗)}.

For x∗ /∈ Z one defines N F
Z (x

∗) := ;.

One can also provide a formula for the Fréchet normal cone, which is often used as its definition.

Proposition 1.15. Consider Z ⊆ Rn nonempty and x∗ ∈ Z . Then

N F
Z (x

∗) := TZ(x
∗)◦ = {w ∈ Rn | limsup

x→x∗,x∈Z\{x∗}
wT x − x∗

‖x − x∗‖
≤ 0}.

Proof. Let us call the give set M . We begin by showing M ⊆ N F
Z (x

∗) := TZ(x∗)◦. To this end consider
an arbitrary w ∈ M and d ∈ TZ(x∗). Then by definition of the tangent cone, we can find (x k)k ⊆ Z and
tk ≥ 0 such that x k→ x∗ and tk(x k − x∗)→ d. Due to w ∈ M we then know

0≥ limsup
x→x∗,x∈Z\{x∗}

wT x − x∗

‖x − x∗‖
≥ lim

k→∞
wT tk(x

k − x∗) ·
1

tk‖x k − x∗‖
= wT d

‖d‖
.

Since this holds for all d ∈ TZ(x∗) we have shown w ∈ N F
Z (x

∗).
To show the opposite inclusion N F

Z (x
∗) ⊆ M assume one can find w ∈ N F

Z (x
∗) \M . Since w /∈ M there

exists (x k)k ⊆ Z with x k→ x∗ and

lim
k→∞

wT x k − x∗

‖x k − x∗‖
> 0.

Defining tk := 1
‖xk−x∗‖ we obtain that

tk(x
k − x∗) =

x k − x∗

‖x k − x∗‖
→ d∗ ∈ TZ(x

∗)

at least on a subsequence. But then wT d∗ > 0, which is a contradiction to w ∈ N F
Z (x

∗) = TZ(x∗)◦.

Using the Frechet normal cone, we can rewrite B-stationarity as

∇ f (x∗)T d ≥ 0 ∀d ∈ TX (x
∗) ⇐⇒ −∇ f (x∗) ∈ TX (x

∗)◦ = N F
X (x

∗).

However, as the following example illustrates, the Fréchet normal cone is rather “unstable”, which
makes it hard to obtain good calculus rules.
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Example 1.16. Consider the MPCC

min
x∈R2

f (x) s.t. 0≤ x1 ⊥ x2 ≥ 0.

Then we have

N F
X (x) =







{0} ×R if x1 > 0, x2 = 0,

R× {0} if x1 = 0, x2 > 0,

(−∞, 0]2 if x1 = 0, x2 = 0.

Thus, if we approach x∗ = (0,0) e.g. with x k = (1
k , 0), then the Fréchet normal cone at x k contains

elements w with w2 > 0 but at the limit these elements disappear.

This motivates the introduction of the following normal cone.

Definition 1.17. Consider Z ⊆ Rn nonempty and closed and x∗ ∈ Z . Then the limiting or Mordukhovich
normal cone of Z at x∗ is defined as

N M
Z (x

∗) := {w ∈ Rn | ∃(x k)k→ x∗, wk ∈ N F
Z (x

k) : wk→ w}.

For x∗ /∈ Z one defines N M
Z (x

∗) := ;.

Since we defined N F
Z (x) = ; for x /∈ Z it suffices to consider sequences (x k)k ⊆ Z in the definition of

the limiting normal cone.
As the name already indicates, the limiting normal cone is the limsup or closure of the Fréchet normal

cone. Originally and also nowadays, the limiting normal cone is often defined based on the proximal
normal cone instead of the Fréchet normal cone. However one can show that both constructions lead to
the same limiting normal cone. Thus, we restrict ourselves to the Fréchet normal cone, which we already
know from Guignard CQ.

Let us consider a few examples, which we need later on.

• For Z = {0} ⊂ R we know

N F
Z (x) =

¨

R if x = 0,

; if x 6= 0.

Consequently, we also have

N M
Z (x) =

¨

R if x = 0,

; if x 6= 0.

• For Z = (−∞, 0] ⊂ R we know

N F
Z (x) =







{0} if x < 0,

[0,∞) if x = 0,

; if x > 0.

Consequently, we also have

N M
Z (x) =







{0} if x < 0,

[0,∞) if x = 0,

; if x > 0.
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• For Z = {x ∈ R2 | 0≤ x1 ⊥ x2} we have

N F
Z (x) =



















{0} ×R if x1 > 0, x2 = 0,

R× {0} if x1 = 0, x2 > 0,

(−∞, 0]× (−∞, 0] if x1 = 0, x2 = 0,

; otherwise.

This leads to the following limiting normal cone

N M
Z (x) =



















{0} ×R if x1 > 0, x2 = 0,

R× {0} if x1 = 0, x2 > 0,

((−∞, 0]× (−∞, 0])∪ ({0} ×R)∪ (R× {0}) if x1 = 0, x2 = 0,

; otherwise.

As we have seen in the examples, for the convex sets {0} and (−∞, 0] the limiting normal cone
coincides with the Fréchet normal cone and the convex normal cone. In Exercise 1.5 we prove that this
is true for general convex sets. Note that this implies that the normal cones of a polyhedron

P = {x ∈ Rn | aT
i x ≤ bi ∀i = 1, . . . , m}

are given by

N M
P (x

∗) = N F
P (x

∗) = NP(x
∗) = {w ∈ Rn | w=

∑

i∈I(x∗)

λiai,λ≥ 0},

where I(x∗) = {i | aT
i x = bi}.

For the nonconvex set {x ∈ R2 | 0 ≤ x1 ⊥ x2} however the limiting normal cone and the Fréchet
normal cone differ at the “point of nonconvexity” x = 0.

Later, we kneed to compute the normal cone to an intersection of sets. A suitable result under quite
weak assumptions can be found in [15, Corollary 4.2].

Theorem 1.18. Consider two nonempty and closed sets A, B ⊆ Rn and x∗ ∈ A∩B. Assume that the set-valued
function

M(y) := {x ∈ A | x + y ∈ B}

is calm in (0, x∗). Then

N M
A∩B(x

∗) ⊆ N M
A (x

∗) + N M
B (x

∗).

The set-valued map M , that appears here, can be seen as a kind of perturbation map, i.e. which points
x are feasible if we perturb the feasible set by the parameter y .

This is exactly exactly the kind of formula we need to proceed with our optimality conditions for
MPCCs. Since the proof is rather involved and based on many concepts we have not introduced here, we
skip the proof and instead take a look at the assumption of calmness. But first, in order to illustrate that
the previous result is not true anymore, if we drop the assumption of calmness, consider the following
example, which originates from a presentation given by Jiri Outrata.
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Example 1.19. Consider the two sets

A= {x ∈ R2 | (x1 + 1)2 + x2
2 ≤ 1} and B = {x ∈ R2 | x1 ≥ 0}.

Since both sets are convex we do not have to differentiate between the various normal cones. The
intersection is A∩ B = {0} and thus N M

A∩B(0) = R
2. On the other hand, we have N M

A (0) = R+ × {0} and
N M

B (0) = R− × {0} and thus

N M
A (0) + N M

B (0) = R× {0} 6( R2 = N M
A∩B(0).

Consequently, the map

M(y) = {x ∈ A | x + y ∈ B}= {x ∈ R2 | (x1 + 1)2 + x2
2 ≤ 1, x1 ≥ −y1}

cannot be calm at (y∗, x∗) = (0,0).

Calmness is a Lipschitz-type property of set-valued maps. So let us introduce some related notions.

Definition 1.20. Consider Y ⊆ Rn a set-valued map M : Y ⇒Rm.

(a) M has the Aubin property at (y∗, x∗) ∈ graph(M), if there exist δ > 0, ε > 0 , L > 0 such that

M(y1)∩ Bε(x
∗) ⊆ M(y2) + L‖y1 − y2‖B1(0) ∀y1, y2 ∈ Bδ(y

∗).

(c) M is calm at (y∗, x∗) ∈ graph(M) if there exist δ > 0, ε > 0 , L > 0 such that

M(y)∩ Bε(x
∗) ⊆ M(y∗) + L‖y − y∗‖B1(0) ∀y ∈ Bδ(y

∗).

The Aubin property is a Lipschitz-type property for set-valued maps, that results from the observation
that one is often only interested in the behavior of M(y) close to a point of interest x∗ ∈ M(y∗) and
thus intersects the images M(y) with Bε(x∗). Note that in the definition of the Aubin property we could
also intersect M(y2) or the complete righthand side with Bε(x∗), but this would not change anything.
However, the Aubin property is always violated if M(y2) = ; for y2 arbitrarily close to y∗. (Recall that
;+ B = ; for any set B.)

Calmness results from the Aubin property by fixing one of the two points y1, y2 to the point of interest
y∗. It is thus a point-based property that does not transfer to a neighborhood, as e.g. Lipschitz continuity
or the Aubin property do.

From single-valued functions we know that (affine) linear functions have nice properties such as global
Lipschitz continuity. This motivates to consider the following class of set-valued maps.

Definition 1.21. A set-valued map M : Rn ⇒ Rm is called a polyhedral set-valued map (polyhedral
multifunction), if its graph

graph(M) := {(y, x) | x ∈ M(y)} ⊆ Rn ×Rm

can be written as the union of finitely many polyhedral convex sets, i.e.

graph(M) =
p
⋃

i=1

Pi where Pi = {(y, x) | Ai(y, x)≤ bi}.

Our next step is to prove that polyhedral set-valued maps are calm.

18 1 Introduction



Theorem 1.22. Consider a polyhedral set-valued map M : Rn ⇒ Rm. Then M is calm at every point
(y∗, x∗) ∈ graph(M).

Proof. Define the set-valued maps

Mi(y) := {x | Ai(y, x)≤ bi}.

We first verify that each map Mi is Lipschitz continuous on its domain. To this end note

Mi(y) := {x | Ai(y, x)≤ bi}
= {x | Ai x x ≤ bi − Ai y y}

= {x | Ai x x ∈ bi − Ai y y +Rli
−}

= {x | Ai x x ∈ (bi − Ai y y +Rli
−)∩ R}

= D[(bi − Ai y y +Rpi
− )∩ R] + K

where K and R are the kernel and the range of Ai x and D is its pseudoinverse. Thus define Li = ‖D‖‖Ai y‖.
Then for all y1, y2 ∈ dom(Mi) we have

bi − Ai y y1 +R
li
− ⊆ (bi − Ai y y2 +R

li
−) + ‖Ai y‖‖y1 − y2‖B1(0)

and thus

Mi(y1) ⊆ Mi(y2) + ‖D‖‖Ai y‖
︸ ︷︷ ︸

=Li

‖y1 − y2‖B1(0).

This shows that all maps Mi are Lipschitz continuous with modulus Li on their domain dom(Mi) .
Now define L := maxp

i=1 Li. Then all Mi are calm on dom(Mi) with modulus L. Now assume M was
not calm at (y∗, x∗) ∈ graph(M) with modulus L. Then we could find (y, x) ∈ graph(M) arbitrarily close
to (y∗, x∗) such that

x /∈ M(y∗) + L‖y − y∗‖B1(0).

Let I ⊆ {1, . . . , p} be the set of all indices i such that (y∗, x∗) ∈ Pi. Since all polyhedrons Pi are closed
and (y, x) is arbitrarily close to (y∗, x∗), we have (y, x) ∈ Pi for some i ∈ I . But then the calmness of Mi
wit modulus L implies

x ∈ Mi(y
∗) + l‖y − y∗‖B1(0) ⊆ M(y∗) + L‖y − y∗‖B1(0),

a contradiction.

1.4 Notation

Let us close this section with some words on the notation used in this script.

• By R+ := [0,∞) we denote the nonnegative real numbers. Analogously R− = (−∞, 0].

• For two vectors x , y ∈ Rn we denote the componentwise (Hadamard) product by

x ◦ y := (x i yi)
n
i=1.

• With ei ∈ Rn we denote the i-th unit vector and with e = (1, . . . , 1)T ∈ Rn the sum of all unit
vectors.
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• If not specified otherwise for x ∈ Rn we denote an arbitrary norm on Rn by ‖x‖. Most of the time,
we use the euclidean norm

‖x‖2 =

√

√

√

n
∑

i=1

x2
i =

p

x T x .

Based on the norm used at the moment, we denote an open ball centered at x with radius r by

Br(x) := {y ∈ Rn | ‖y − x‖< r}.

• For a sequence of real numbers (tk)k ⊂ R with tk > 0 converging to zero, we write tk ↓ 0.

• For a sequence (x k)k ⊆ X with x k→ x∗ we use the shorthand x k→X x∗.

• Sometimes, we use the Landau notation

(ak)k = o(bk) :⇐⇒
ak

bk
→ 0 for k→∞.

• For a function f : X ⊆ Rn→ R we call x∗ ∈ X a local minimum of f on X , if there is an ε > 0 such
that

f (x)≥ f (x∗) ∀x ∈ X ∩ Bε(x
∗).

If the above inequality holds even for all x ∈ X , we call x∗ a global minimum of f on X .

• A function F : X ⊆ Rn→ Rm is called globally Lipschitz continuous on X if there is a constant L > 0
such that

‖F(x)− F(y)‖ ≤ L‖x − y‖ ∀x , y ∈ X .

The function F is called locally Lipschitz continuous at x ∈ X , if there is a constant L = Lx > 0 and
a radius ε > 0 such that

‖F(y)− F(z)‖ ≤ L‖y − z‖ ∀y, z ∈ X ∩ Bε(x).

The function F is called locally Lipschitz continuous on X it it is locally Lipschitz continuous at all
x ∈ X .

1.5 Exercises

Exercise 1.1 (Complementarity Conditions). For two vectors x , y ∈ Rn the condition

x i ≥ 0, yi ≥ 0, x i yi = 0 ∀i = 1, . . . , n

is called complementarity condition. Prove, that it is equivalent to the following conditions:

(a) x ≥ 0, y ≥ 0 and x i = 0 or yi = 0 for all i = 1, . . . , n.

(b) x ≥ 0, y ≥ 0 and x T y = 0 .

(c) x ≥ 0, y ≥ 0 and x i · yi ≤ 0 for all i = 1, . . . , n.

(d) min{x i, yi}= 0 for all i = 1, . . . , n.
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Exercise 1.2. Consider the NLP formulation

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

G(x)≥ 0, H(x)≥ 0, G(x) ◦H(x)≤ 0.

and prove that MFCQ is violated in every feasible point.

Exercise 1.3. Consider the NLP formulation

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

G(x)≥ 0, H(x)≥ 0, G(x) ◦H(x)≤ 0.

and prove that the Fritz-John conditions are satisfied in every feasible point.

Exercise 1.4. Compute the Bouligand subdifferential and the Clarke subdifferential of the following
norms for all x ∈ Rn:

(a) f2(x) = ‖x‖2

(a) f1(x) = ‖x‖1

(a) f∞(x) = ‖x‖∞

Compare the results at x = 0.

Exercise 1.5. Consider a nonempty, closed and convex set Z ⊆ Rn and an arbitrary point x∗ ∈ Z . Prove

N F
Z (x

∗) = N M
Z (x

∗) = NZ(x
∗).

Exercise 1.6. Consider nonempty and closed sets Zi ⊆ Rni for i = 1, . . . , m and define Z := Z1× . . .× Zm.
Consider an arbitrary point x∗ ∈ Z .

(a) Prove

TZ(x
∗) ⊆ TZ1

(x∗)× . . .× TZm
(x∗)

and find an example, where the inclusion is strict. Prove that equality holds, if all sets Zi are
additionally convex.

Remark: In fact it suffices to require N F
Zi
(x∗) = N M

Zi
(x∗) for all i to guarantee equality. This is always

true for convex sets Zi, see Exercise 1.5

(b) Prove

N F
Z (x

∗) = N F
Z1
(x∗)× . . .× N F

Zm
(x∗)

and

N M
Z (x

∗) = N M
Z1
(x∗)× . . .× N M

Zm
(x∗)
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2 Optimality Conditions

MPCC

Optimality
Conditions

S-
stationarity

C-
stationarity

M-
stationarity

MPCC-CQs

Throughout this section we consider mathematical programs with complementarity constraints
(MPCC) of the form

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

0≤ G(x)⊥ H(x)≥ 0

with f : Rn → R, g : Rn → Rm, h : Rn → Rp, G, H : Rn → Rq. We assume that all functions are at least
once continuously differentiable.

We denote the feasible set by X ⊆ Rn, i.e.

X := {x ∈ Rn | g(x)≤ 0, h(x) = 0,0≤ G(x)⊥ H(x)≥ 0}.

The feasible set of one complementarity constraint

Gi(x)≥ 0, Hi(x)≥ 0, Gi(x)Hi(x) = 0

is depicted in Figure 2.1.
This inspires the separation of the complementarity constraints into the following three index sets for

a feasible point x∗ ∈ X :

I0+(x
∗) := {i | Gi(x

∗) = 0, Hi(x
∗)> 0},

I00(x
∗) := {i | Gi(x

∗) = 0, Hi(x
∗) = 0},

I+0(x
∗) := {i | Gi(x

∗)> 0, Hi(x
∗) = 0}.

Here, the first subscript indicates the status of Gi and the second stands for Hi. The set I00(x∗) is
sometimes called the biactive set. Obviously these sets are pairwise disjoint and

{1, . . . , q}= I0+(x
∗)∪ I00(x

∗)∪ I+0(x
∗).

Analogously to nonlinear optimization, for a feasible point x∗ ∈ X we denote the set of active inequal-
ities by

Ig(x
∗) = {i | gi(x

∗) = 0}.
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0 1
Gi(x)

1

Hi(x)

Figure 2.1: Feasible set of Gi(x)≥ 0, Hi(x)≥ 0, Gi(x)Hi(x) = 0

2.1 KKT based Optimality Conditions

Obviously we can interpret the MPCC as the standard nonlinear optimization problem (MPCC-NLP)

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

G(x)≥ 0,

H(x)≥ 0,

G(x) ◦H(x) = 0,

where a ◦ b denotes the componentwise (Hadamard) product of two vectors a, b ∈ Rq.
And even though we have seen that local minima of an MPCC are not necessarily KKT points of MPCC-

NLP, we also have seen that Guignard CQ has a chance to be satisfied. Thus, we can analyze the KKT
conditions applied to MPCC-NLP and try to find suitable constraint qualifications.

2.1.1 Strong Stationarity

We know that, under constraint qualifications such as Abadie CQ or LICQ, every local solution of MPCC-
NLP satisfies the KKT conditions. So let us begin by writing down these KKT conditions for MPCC-NLP:

At a KKT point x∗, there exist multipliers λg ∈ Rm
+ , µh ∈ Rp, λG ∈ Rq

+, λH ∈ Rq
+ and µGH ∈ Rq such

that

∇ f (x∗) +∇g(x∗)λg +∇h(x∗)µh

+
q
∑

i=1

�

−λG
i ∇Gi(x

∗)−λH∇Hi(x
∗) +µGH

i

�

Hi(x
∗)∇Gi(x

∗) + Gi(x
∗)∇Hi(X

∗)
�

�

= 0

,

and

0≥ g(x∗)⊥ λg ≥ 0,

h(x∗) = 0,

0≤ G(x∗)⊥ λG ≥ 0,

0≤ H(x∗)⊥ λH ≥ 0,

G(x∗) ◦H(x∗) = 0.
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Simplifying these conditions using γi = λG
i −µ

GH Hi(x∗) and νi = λH
i −µ

GH Gi(x∗), we obtain

∇ f (x∗) +∇g(x∗)λg +∇h(x∗)µh −∇G(x∗)γ−∇H(x∗)ν= 0,

0≥ g(x∗)⊥ λg ≥ 0,

h(x∗) = 0,

G(x∗)≥ 0, H(x∗)≥ 0,

γi ∈ R,νi = 0 ∀i ∈ I0+(x
∗),

γi ≥ 0,νi ≥ 0 ∀i ∈ I0+(x
∗),

γi = 0,νi ∈ R ∀i ∈ I+0(x
∗).

This leads to our first optimality condition for MPCC, which was first introduced by Scheel and Scholtes
in [28] and can also be found in [22].

Definition 2.1. A feasible point x∗ ∈ X is called strongly stationary (S-stationary) if there exist multipliers
λ ∈ Rm, µ ∈ Rp and γ,ν ∈ Rq such that

∇ f (x∗) +∇g(x∗)λ+∇h(x∗)µ−∇G(x∗)γ−∇H(x∗)ν= 0,

0≥ g(x∗)⊥ λ≥ 0,

h(x∗) = 0,

G(x∗)≥ 0, H(x∗)≥ 0,

νi = 0 ∀i ∈ I0+(x
∗),

γi ≥ 0,νi ≥ 0 ∀i ∈ I00(x
∗),

γi = 0 ∀i ∈ I+0(x
∗).

From nonlinear optimization we know that the KKT conditions are necessary optimality conditions
only under constraint qualifications, but we have already seen that CQs such as LICQ and MFCQ are
violated at every feasible point of MPCC-NLP. Even Abadie CQ is often violated, because the tangent
cone is typically nonconvex whereas the linearized tangent cone is polyhedral convex. More precisely,
we have

LX (x
∗) = {d ∈ Rn | ∇gi(x

∗)≤ 0 ∀i ∈ Ig(x
∗),

∇h(x∗)T d = 0,

∇Gi(x
∗)T d = 0 ∀i ∈ I0+(x

∗),
∇Hi(x

∗)T d = 0 ∀i ∈ I+0(x
∗),

∇Gi(x
∗)T d ≥ 0,∇Hi(x

∗)T d ≥ 0 ∀i ∈ I00(x
∗)}

and

LX (x
∗)◦ = {w ∈ Rn | w=∇g(x∗)λ+∇h(x∗)µ−∇G(x∗)γ−∇H(x∗)ν,

λ≥ 0 if i ∈ Ig(x
∗),

λi = 0 if i /∈ Ig(x
∗),

γi = 0 if i ∈ I+0(x
∗),

νi = 0 if i ∈ I0+(x
∗),

γi ≥ 0,νi ≥ 0 if i ∈ I00(x
∗)}

see Exercise 2.5 for details.
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So let us take a closer look at the structure of the feasible set of MPCC around a point x∗ ∈ X . Then
for every i ∈ I+0(x∗) the continuity of G implies that Gi(x)> 0 and thus Hi(x) = 0 for all x ∈ X close to
x∗. Analogously we obtain Hi(x) > 0 and thus Gi(x) = 0 for all x ∈ X close to x∗ and all i ∈ I0+(x∗).
For i ∈ I00(x∗) both Gi(x) = 0, Hi(x∗)≥ 0 and Gi(x)≥ 0, Hi(x∗) = 0 are possible in a neighborhood.

Thus, for an arbitrary set I ⊆ I00(x∗) we define the tightened program TNLP(x∗, I) as

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

Gi(x) = 0, Hi(x)≥ 0 ∀i ∈ I0+(x
∗)∪ I ,

Gi(x)≥ 0, Hi(x) = 0 ∀i ∈ I+0(x
∗)∪ I c,

where I c := I00(x∗) \ I denotes the complement of I with respect to the biactive set I00(x∗). Denote the
feasible set of TNLP(x∗, I) by X I . Then x∗ ∈ X I for all I ⊆ I00(x∗) and there exists a radius r > 0 such
that

X ∩ Br(x
∗) =

⋃

I⊆I00(x∗)

ZI ∩ Br(x
∗).

Since the tangent cone only depends on the feasible set in an arbitrarily small neighborhood and there
are only finitely many I ⊆ I00(x∗), we obtain

TX (x
∗) = TX∩Br (x∗)(x

∗) =
⋃

I⊆I00(x∗)

TX I∩Br (x∗)(x
∗) =

⋃

I⊆I00(x∗)

TX I
(x∗).

Thus, passing to the polar cones, we obtain

TX (x
∗)◦ =

⋂

I⊆I00(x∗)

TX I
(x∗)◦

For more details on calculus rules for cones and polar cones, see [27]. If some constraint qualification
for X I holds at x∗, we have

TX (x
∗)◦ =

⋂

I⊆I00(x∗)

TX I
(x∗)◦ =

⋂

I⊆I00(x∗)

LX I
(x∗)◦,

where

LX I
(x∗) = {d ∈ Rn | ∇gi(x

∗)≤ 0 ∀i ∈ Ig(x
∗),

∇h(x∗)T d = 0,

∇Gi(x
∗)T d = 0 ∀i ∈ I0+(x

∗)∪ I ,

∇Hi(x
∗)T d = 0 ∀i ∈ I+0(x

∗)∪ I c,

∇Gi(x
∗)T d ≥ 0 ∀i ∈ I c,

∇Hi(x
∗)T d ≥ 0 ∀i ∈ I}

and

LX I
(x∗)◦ = {w ∈ Rn | w=∇g(x∗)λ+∇h(x∗)µ−∇G(x∗)γ−∇H(x∗)ν,

λ≥ 0 if i ∈ Ig(x
∗),

λi = 0 if i /∈ Ig(x
∗),

γi = 0 if i ∈ I+0(x
∗),

νi = 0 if i ∈ I0+(x
∗),

γi ≥ 0 if i ∈ I c,

νi ≥ 0 if i ∈ I}
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For Guignard CQ to hold, the critical inclusion is

TX (x
∗)◦ ⊆ LX (x

∗)◦.

So let us consider an arbitrary element w ∈ TX (x∗)◦. If for I ⊆ I00(x∗) a CQ for TNLP(x∗, I) holds at x∗,
we know w ∈ LX I

(x∗)◦ and thus

w=
∑

i∈Ig (x∗)

λi∇gi(x
∗) +∇h(x∗)µ−

∑

i∈I0+(x∗)∪I00(x∗)

γi∇Gi(x
∗)−

∑

i∈I+0(x∗)∪I00(x∗)

νi∇Hi(x
∗)

with λi ≥ 0 for all i ∈ Ig(x∗), γi ≥ 0 for all i ∈ I c and νi ≥ 0 for all i ∈ I . If for I c ⊆ I00(x∗) a CQ for
TNLP(x∗, I c) holds, too, then we also have w ∈ LX I c (x

∗)◦ and thus

w=
∑

i∈Ig (x∗)

λc
i∇gi(x

∗) +∇h(x∗)µc −
∑

i∈I0+(x∗)∪I00(x∗)

γc
i∇Gi(x

∗)−
∑

i∈I+0(x∗)∪I00(x∗)

νc
i∇Hi(x

∗)

with λc
i ≥ 0 for all i ∈ Ig(x∗), γc

i ≥ 0 for all i ∈ I and νc
i ≥ 0 for all i ∈ I c. If the gradients

∇gi(x
∗)(i ∈ Ig(x

∗)), ∇hi(x
∗)(i = 1, . . . , p), ∇Gi(x

∗)(i ∈ I0+(x
∗)∪I00(x

∗)), ∇Hi(x
∗)(i ∈ I+0(x

∗)∪I00(x
∗))

are linearly independent, then w has a unique representation with respect to these gradients and thus
λ,µ,γ,ν and λc,µc,γc,νc have to coincide. This implies

w=
∑

i∈Ig (x∗)

λi∇gi(x
∗) +∇h(x∗)µ−

∑

i∈I0+(x∗)∪I00(x∗)

γi∇Gi(x
∗)−

∑

i∈I+0(x∗)∪I00(x∗)

νi∇Hi(x
∗)

with λi ≥ 0 for all i ∈ Ig(x∗), γi ≥ 0 for all i ∈ I00(x∗) and νi ≥ 0 for all i ∈ I00(x∗). Thus we have
shown w ∈ LX (x∗)◦ and therefore TX (x∗)◦ ⊆ LX (x∗)◦ under the above liner independence condition and
the assumption that a CQ holds for the tightened programs TNLP(x∗, I). However, a closer look reveals
that the used linear independence condition is exactly LICQ for all TNLP(x∗, I).

This motivates the following definition, see also [28]:

Definition 2.2. At a feasible point x∗ ∈ X the MPCC linear independence CQ (MPCC-LICQ) holds, if

∇gi(x
∗)(i ∈ Ig(x

∗)), ∇hi(x
∗)(i = 1, . . . , p), ∇Gi(x

∗)(i ∈ I0+(x
∗)∪I00(x

∗)), ∇Hi(x
∗)(i ∈ I+0(x

∗)∪I00(x
∗))

are linearly independent.

Using this terminology, we have proven the following theorem, see also [13]:

Theorem 2.3. Let x∗ ∈ X be feasible for the MPCC.

(a) If MPCC-LICQ holds at x∗ then standard Guignard CQ for the NLP formulation of the MPCC holds
there, too.

(b) If x∗ is a local minimum of MPCC and MPCC-LICQ holds there, then x∗ is an S-stationary point.

For “convex” MPCCs one can also prove the opposite implication.

Theorem 2.4. Consider MPCC, where f , g, h, G, H are continuously differentiable and f , gi are convex and
h, G, H are affine linear. Then every S-stationary point x∗ is a local minimum.
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Proof. For all I ⊆ I00(x∗) we consider again the tightened programs TNLP(x∗, I)

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

Gi(x) = 0, Hi(x)≥ 0 ∀i ∈ I0+(x
∗)∪ I ,

Gi(x)≥ 0, Hi(x) = 0 ∀i ∈ I+0(x
∗)∪ I c,

Then we know that x∗ ∈ X I for all I ⊆ I00(x∗) and that there exists a radius r > 0 such that

X ∩ Br(x
∗) =

⋃

I⊆I00(x∗)

ZI ∩ Br(x
∗).

Thus, since there are only finitely many subsets I ⊆ I00(x∗) it suffices to show that x∗ is a local minimum
of TNLP(x∗, I) for all I ⊆ I00(x∗). However, the S-stationary point x∗ is a KKT point of all TNLP(x∗, I)
and all TNLP(x∗, I) are convex NLPs. Therefore, the statement follows from the corresponding standard
result from nonlinear optimization..

In classical nonlinear optimization LICQ is the strongest CQ and we know that we can guarantee
the KKT conditions under much weaker CQs. This raises the question whether weaker MPCC-CQs are
sufficient for S-stationarity. To answer this question let us come back to Example 1.1.

Example 2.5. Consider again the MPCC

min
x∈R3

x1 + x2 − x3 s.t. −4x1 + x3 ≤ 0,

−4x2 + x3 ≤ 0,

0≤ x1 ⊥ x2 ≥ 0,

where we already know that the global minimum x∗ = (0, 0,0)T is not a KKT point and thus not S-
stationary.

If we take a look at the gradients, we see that the four vectors





−4
0
1



 ,





0
−4
1



 ,





1
0
0



 ,





0
1
0





can of course not be linearly independent in R3. Consequently MPCC-LICQ is violated. But, as we will
see later, MPCC-MFCQ holds at x∗.

Thus even in this very simple example, where all constraints (except for the complementarity) are
linear, we cannot guarantee S-stationarity of minima as soon as MPCC-LICQ is violated.. Consequently,
if we want to use weaker CQs than MPCC-LICQ, we must most likely also work with weaker optimality
conditions.

2.1.2 Alternative and Weak Stationarity

Recall that we used the tightened programs TNLP(x∗, I)

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

Gi(x) = 0, Hi(x)≥ 0 ∀i ∈ I0+(x
∗)∪ I ,

Gi(x)≥ 0, Hi(x) = 0 ∀i ∈ I+0(x
∗)∪ I c,
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with I ⊆ I00(x∗) in order to prove that MPCC-LICQ guarantees S-stationarity of local minima of MPCC.
Motivated by these TNLPs, we define two more NLPs, whose feasible sets are locally around x∗ a

simplification of the feasible set of MPCC. The relaxed program RNLP(x∗) is defined as

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

G(x) = 0, H(x)≥ 0 ∀i ∈ I0+(x
∗),

G(x)≥ 0, H(x) = 0 ∀i ∈ I+0(x
∗),

G(x)≥ 0, H(x)≥ 0 ∀i ∈ I00(x
∗)

and the tightened program TNLP(x∗) as

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

G(x) = 0, H(x)≥ 0 ∀i ∈ I0+(x
∗),

G(x)≥ 0, H(x) = 0 ∀i ∈ I+0(x
∗),

G(x) = 0, H(x) = 0 ∀i ∈ I00(x
∗).

If we compare TNLP(x∗), RNLP(x∗) and TNLP(x∗, I), we see that they only differ in the constraints
corresponding to the biactive index set I00(x∗). For i ∈ I00(x∗) we relax the complementarity constraint
to Gi(x) ≥ 0, Hi(x) ≥ 0 in RNLP(x∗), we chose one of the two possibilities Gi(x) = 0, Hi(x) ≥ 0 or
Gi(x)≥ 0, Hi(x) = 0 in TNLP(x∗, I) and we tighten the constraint to Gi(x) = 0, Hi(x) = 0 in TNLP(x∗).

Since the feasible set of RNLP locally includes the feasible set of MPCC, which locally includes the
feasible set of TNLP(x∗, I) for all I ⊆ I00(x∗) and for all I ⊆ I00(x∗) the feasible set of TNLP(x∗) is locally
included in the feasible set of TNLP(x∗, I), we immediately obtain the following implications:

x∗is a local minimum of RNLP(x∗)
=⇒ x∗is a local minimum of MPCC

=⇒ x∗is a local minimum of TNLP(x∗, I) ∀I ⊆ I00(x
∗)

=⇒ x∗is a local minimum of TNLP(x∗)

Thus necessary optimality conditions for TNLP(x∗, I) and TNLP(x∗) are also local optimality conditions
for MPCC.

Let us write down the KKT conditions for all auxiliary NLPs. Since they only differ in the constraints
for i ∈ I00(x∗), we obtain the following for all problems:

∇ f (x∗) +∇g(x∗)λ+∇h(x∗)µ−∇G(x∗)γ−∇H(x∗)ν= 0,

0≥ g(x∗)⊥ λg ≥ 0,

h(x∗) = 0,

G(x∗)≥ 0, H(x∗)≥ 0,

νi = 0 ∀i ∈ I0+(x
∗),

γi = 0 ∀i ∈ I+0(x
∗).

For RNLP(x∗) we additionally have the condition

γi ≥ 0,νi ≥ 0 ∀i ∈ I00(x
∗),

for TNLP(x∗, I) we have the additional condition

νi ≥ 0 ∀i ∈ I , γi ≥ 0 ∀i ∈ I00(x
∗) \ I ,
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γi
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(a) RNLP(x∗)
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νi

(c) TNLP(x∗)

Figure 2.2: Sign constraints of the multipliers corresponding to i ∈ I00(x∗)

and for TNLP(x∗) we do not have any sign constraints on γi,νi for i ∈ I00(x∗). These conditions are also
displayed in Figure 2.2.

We see that the S-stationarity conditions are exactly the KKT conditions for RNLP(x∗), which provides
another insight into why S-stationarity might be to strong as necessary optimality conditions for MPCCs.
The KKT conditions for the tightened problems motivate the following optimality conditions for MPCCs,
see [28, 12].

Definition 2.6. A feasible point x∗ ∈ X is called weakly stationary (W-stationary) if there exist multipliers
λ ∈ Rm, µ ∈ Rp and γ,ν ∈ Rq such that

∇ f (x∗) +∇g(x∗)λ+∇h(x∗)µ−∇G(x∗)γ−∇H(x∗)ν= 0,

0≥ g(x∗)⊥ λ≥ 0,

h(x∗) = 0,

G(x∗)≥ 0, H(x∗)≥ 0,

νi = 0 ∀i ∈ I0+(x
∗),

γi = 0 ∀i ∈ I+0(x
∗).

If additionally

γi ≥ 0 or µi ≥ 0 ∀i ∈ I00(x
∗),

the point x∗ is called A-stationary (A = alternative).

Since weak stationarity only considers optimality with respect to the smaller feasible set of the tight-
ened program TNLP(x∗), using these conditions as necessary optimality conditions usually leads to too
many candidates for minima of MPCC.

2.1.3 MPCC–tailored Constraint Qualifications

The tightened program can also be used to define other MPCC analogues of NLP CQs by saying that the
MPCC CQ holds at x∗ ∈ X is the corresponding NLP CQ for TNLP(x∗) holds at x∗. Is is easy to see that
MPCC-LICQ has this property.

To define some other useful MPCC CQs we first have to introduce the notion of positive linear depen-
dence.

Definition 2.7. A set of vectors ai ∈ Rn for i ∈ A and bi ∈ Rn for i ∈ B is called positively linearly
dependent if there exist multipliers λi ≥ 0 for i ∈ A and µi ∈ R for i ∈ B such that (λ,µ) 6= (0,0) and

0=
∑

i∈A

λiai +
∑

i∈B

µi bi.
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MPCC-LICQ MPCC linear CQ

MPCC-MFCQ MPCC-CRCQ

MPCC-CPLD

Figure 2.3: Relations between MPCC-CQs

Otherwise the vectors are called positively linearly independent.

Note that the sign restriction only applies to the first set of vectors. Obviously linear independence
implies positive linear independence whereas positive linear dependence implies linear dependence.

Now we can define some more MPCC tailored CQs, see [28, 31, 16].

Definition 2.8. Let x∗ ∈ X be feasible for MPCC.

(a) MPCC Mangasarian-Fromovitz CQ (MPCC-MFCQ) holds at x∗ if the following gradients are positively
linearly independent:

∇gi(x
∗)(i ∈ Ig(x

∗))
and ∇hi(x

∗)(i = 1, . . . , p),∇Gi(x
∗)(i ∈ I0+(x

∗)∪ I00(x
∗)),∇Hi(x

∗)(i ∈ I+0(x
∗)∪ I00(x

∗)).

(b) MPCC constant rank CQ (MPCC-CRCQ) holds at x∗ if for all subsets I1 ⊆ Ig(x∗), I2 ⊆ {1, . . . , p},
I3 ⊆ I0+(x∗)∪ I00(x∗), I4 ⊆ I+0(x∗)∪ I00(x∗) such that the gradients

∇gi(x)(i ∈ I1),∇hi(x)(i ∈ I2),∇Gi(x)(i ∈ I3),∇Hi(x)(i ∈ I4).

are linearly dependent at x∗, they remain linearly dependent in a neighborhood of x∗.

(c) MPCC constant positive linear dependence CQ (MPCC-CPLD) holds at x∗ if for all subsets I1 ⊆
Ig(x∗), I2 ⊆ {1, . . . , p}, I3 ⊆ I0+(x∗)∪ I00(x∗), I4 ⊆ I+0(x∗)∪ I00(x∗) such that the gradients

∇gi(x)(i ∈ I1)
and ∇hi(x)(i ∈ I2),∇Gi(x)(i ∈ I3),∇Hi(x)(i ∈ I4).

are positively linearly dependent at x∗, they remain linearly dependent in a neighborhood of x∗.

(d) MPCC linear CQ, if all constraints g, h, G, H are (affine) linear functions.

Note that we define MPCC-MFCQ based on the alternative positive linear independence characteriza-
tion (PLICQ) of MFCQ instead of the classical definition from nonlinear optimization, see Exercise 2.4
for details.

One immediately sees that MPCC-LICQ implies both MPCC-MFCQ and MPCC-CRCQ, whereas MPCC-
MFCQ and MPCC-CRCQ each imply MPCC-CPLD. However, there is no relation between MPCC-MFCQ
and MPCC-CRCQ. The MPCC linear CQ implies MPCC-CRCQ. See also Figure 2.3 for a visualization of
the relations between the MPCC-CQs.

And due to the way these MPCC-CQs are defined, we immediately obtain the following theorem.

Theorem 2.9. Let x∗ ∈ X be a local minimum of MPCC such that MPCC-CPLD or any stronger MPCC CQ
holds. Then x∗ is weakly stationary.

If we look again at Example 2.5, all constraints are linear and thus MPCC linear CQ holds. One can
also verify that MPCC-MFCQ holds. Thus, even under MPCC-MFCQ, which is only slightly weaker than
MPCC-LICQ, S-stationarity is already not a necessary optimality condition anymore. Therefore, in the
next sections we want to find necessary optimality conditions, which are are satisfied under these MPCC
CQs but more selective than weak stationarity.
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2.2 C-Stationarity

An alternative approach to obtain necessary optimality conditions for the MPCC is based on a reformu-
lation of the complementarity conditions using a so called NCP function.

Definition 2.10. A function ϕ : R2→ R is called an NCP function (nonlinear complementarity problem),
if

ϕ(a, b) = 0 ⇐⇒ 0≤ a ⊥ b ≥ 0.

The two most prominent examples for NCP functions are given below:

• minimum function: ϕ(a, b) =min{a, b}

• Fischer-Burmeister function: ϕ(a, b) =
p

a2 + b2 − (a+ b)

For more examples and useful properties of NCP functions see [32].
As the name already indicates, an NCP function ϕ can be used to reformulate complementarity con-

straints as equations

0≤ Gi(x)⊥ Hi(x)≥ 0 ⇐⇒ ϕ(Gi(x), Hi(x)) = 0.

Thus we can equivalently reformulate the MPCC

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

0≤ G(x)⊥ H(x)≥ 0

as

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

ϕ(Gi(x), Hi(x)) = 0 ∀i = 1, . . . , q.

The only problem is that NPC functions usually are nondifferentiable at (a, b) = (0,0). One can
construct differentiable NCP functions, but these then necessarily have the property ∇ϕ(0,0) = (0, 0)T .
Using such a differentiable NCP function to reformulate the MPCC would lead to

∇ϕ(Gi(x), Hi(x)) = 0 ∀i ∈ I00(x
∗)

and thus result in the same problems as the NLP formulation of the MPCC.
In the remainder of this section, we consider only the minimum function

ϕ(a, b) =min{a, b}.

Thus function is differentiable for all (a, b) such that a 6= b.
Now consider an arbitrary feasible point x∗ ∈ X and rewrite the complementarity constraints as

ϕ(Gi(x), Hi(x)) =min{Gi(x), Hi(x)}= 0.

For all i ∈ I0+(x∗) we locally have Hi(x)> 0 and thus the constraint locally reduces to the equation

min{Gi(x), Hi(x)}= Gi(x) = 0.

For all i ∈ I+0(x∗) we locally have Gi(x)> 0 and thus the constraint reduces to

min{Gi(x), Hi(x)}= Hi(x) = 0.
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Consequently, the minimum function is differentiable for all I ∈ I0+(x∗)∪ I+0(x∗) with

∇min{Gi(x
∗), Hi(x

∗)}=

¨

∇Gi(x∗) if i ∈ I0+(x∗),
∇Hi(x∗) if i ∈ I+0(x∗).

Unfortunately, in case i ∈ I00(x∗) we have

min{Gi(x
∗), Hi(x

∗)}= Gi(x
∗) = Hi(x

∗) = 0

and thus the map x 7→min{Gi(x), Hi(x)}may be nondifferentiable at x∗. This is a problem if we want to
obtain KKT-type optimality conditions. For this reason, we use the Clarke subdifferential as a substitute
for the gradient.

Now we want to apply this approach to our nonsmooth reformulation of the MPCC as

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

min{Gi(x), Hi(x)}= 0 ∀i = 1, . . . , q.

Since we assume that all functions f , g, h, G, H are continuously differentiable, they are locally Lipschitz
continuous and so is min{Gi(x), Hi(x)}. The Clarke subdifferential of f , gi, hi consists only of the re-
spective gradients due to the continuous differentiability. For all i /∈ I00(x∗) we have already seen that
min{Gi(x), Hi(x)} is continuously differentiable and computed the gradient.

It remains to compute the Clarke subdifferential of min{Gi(x), Hi(x)} for all i ∈ I00(x∗). To do so, we
can use the chain rule, which for i ∈ I00(x∗) provides the estimate

∂ C min{Gi, Hi}(x∗) ⊆ conv{∇Gi(x
∗),∇Hi(x

∗)}.

Although the inner function is continuously differentiable, the outer function is nonconvex and thus the
chain rule does not guarantee equality. However, one can show that

∂ C min{Gi, Hi}(x∗) = conv{∇Gi(x
∗),∇Hi(x

∗)}.

If we assume e.g. Gi(x) ≥ Hi(x) in a neighborhood of x∗. Due to Hi(x∗) = Gi(x∗) = 0 the function
Gi(x)−Hi(x) then attains a local minimum at x∗, which implies ∇Gi(x∗)−∇Hi(x∗) = 0 and thus

∂ C min{Gi, Hi}(x∗) = {∇Hi(x
∗)}= conv{∇Gi(x

∗),∇Hi(x
∗)}.

Thus the formula holds in all possible cases.
At a local minimum the Fritz-John conditions thus guarantee the existence of multipliers α ≥ 0,λ ≥

0,µ,δ not all zero such that

0 ∈ α∇ f (x∗) +
∑

i∈Ig

λi∇gi(x
∗) +

n
∑

i=1

µi∇hi(x
∗)

+
∑

i∈I0+

δi∇Gi(x
∗) +

∑

i∈I+0

δi∇Hi(x
∗) +

∑

i∈I00

δi conv{∇Gi(x
∗),∇Hi(x

∗)}.

Let ci∇Gi(x∗)+ (1− ci)∇Hi(x∗) with ci ∈ [0,1] be the needed elements of the convex hull. Then we can
define

γi =







−δi if i ∈ I0+(x∗),
−δici if i ∈ I00(x∗),
0 if i ∈ I+0(x∗),

and νi =







−δi if i ∈ I+0(x∗),
−δi(1− ci) if i ∈ I00(x∗),
0 if i ∈ I0+(x∗)
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Figure 2.4: Sign constraints on the multipliers corresponding to i ∈ I00(x∗)

and obtain the condition

α∇ f (x∗) +∇g(x∗)λ+∇h(x∗)µ−∇G(x∗)γ−∇H(x∗)ν= 0,

where

γiνi = ci(1− ci)δ
2
i ≥ 0 ∀i ∈ I00(x

∗).

While these Fritz-John conditions hold at every local minimum x∗ without the need for a CQ, the
multiplier α may be equal to zero. In this degenerate case the optimality condition is independent from
the objective function. However, if α= 0, we know that λ,µ,ν,γ are not all equal to zero and

∇g(x∗)λ+∇h(x∗)µ−∇G(x∗)γ−∇H(x∗)ν= 0

Due to λ≥ 0 this cannot happen, if MPCC-MFCQ holds at x∗.
In case α > 0 we can without loss of generality assume α= 1 and thus obtain the following optimality

conditions.

Definition 2.11. A feasible point x∗ ∈ X is called Clarke stationary (C-stationary) if there exist multipliers
λ ∈ Rm, µ ∈ Rp and γ,ν ∈ Rq such that

∇ f (x∗) +∇g(x∗)λ+∇h(x∗)µ−∇G(x∗)γ−∇H(x∗)ν= 0,

0≥ g(x∗)⊥ λ≥ 0,

h(x∗) = 0,

G(x∗)≥ 0, H(x∗)≥ 0,

νi = 0 ∀i ∈ I0+(x
∗),

γi = 0 ∀i ∈ I+0(x
∗).

and additionally

γi ·µi ≥ 0 ∀i ∈ I00(x
∗).

A comparison of these optimality conditions with our previous ones yields that C-stationarity is weaker
than S-stationarity, stronger than weak stationarity and has no immediate relation to A-stationarity.

Our observation concerning MPCC-MFCQ immediately yields the following result.

Theorem 2.12. Let x∗ ∈ X be a local minimum of MPCC, where MPCC-MFQ holds. Then x∗ is C-stationary.
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In fact, one can show that local minima are C-stationary under much weaker constraint qualifications
such as an MPCC analogue of GCQ. We later obtain this as a corollary of a stronger result.

So far, we know that a local minimum x∗ of MPCC satisfying MPCC-MFCQ must be both A- and
C-stationary. If even MPCC-LICQ holds, the multipliers for both must be the same and thus satisfy both

γi ≥ 0 or νi ≥ 0 ∀i ∈ I00(x
∗)

and

γiνi ≥ 0 ∀i ∈ I00(x
∗).

This results in the condition

γi · νi = 0 or γi ≥ 0,νi ≥ 0 ∀i ∈ I00(x
∗),

which illustrated in Figure 2.4. Feasible points of MPCC satisfying this stronger condition compared
to A- or C-stationarity are later called M-stationary. Of course we already know that a local minimum
satisfying MPCC-LICQ is S-stationary, which is even stronger than M-stationarity. However, we have
already seen that it is not possible to weaken the assumption MPCC-LICQ significantly as local minima
satisfying MPCC-MFCQ may already violate the S-stationarity conditions. In contrast to this, we will see
that local minima are M-stationary even under MPCC-analogues of Guignard CQ.

2.3 M-Stationarity

We know that S-stationarity is a necessary optimality condition for the MPCC only under MPCC-LICQ
and may already be violated under MPCC-FCQ. Thus, our goal is to derive an alternative stationarity
condition, which is a strong as possible but holds under weaker constraint qualifications such as MPCC
analogues of GUignard and Abadie CQ.

2.3.1 MPCC Analogues of Abadie and Guignard CQ

As we have seen already, classical Abadie CQ is most likely not satisfied for MPCCs whereas classical
Guignard CQ has at least a chance to hold.

So far, we have introduces MPCC analogues of CQs using the tightened program TNLP(x∗)

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

Gi(x)≥ 0, Hi(x) = 0 ∀i ∈ I+0(x
∗),

Gi(x) = 0, Hi(x)≥ 0 ∀i ∈ I0+(x
∗),

Gi(x) = 0, Hi(x) = 0 ∀i ∈ I00(x
∗).

To see that it does not make a lot of sense to define MPCC-ACQ and MPCC-GCQ the same way, consider
the following example.

Example 2.13. Consider the simple MPCC

min
x∈R2

f (x) s.t. 0≤ x1 ⊥ x2 ≥ 0

and x∗ = 0. Then the feasible set of TNLP(x∗) is equal to {x∗} and thus the corresponding tangent
cone and linearized tangent cone also consist only of {x∗}. However, the tangent cone of the original
MPCC at x∗ is the whole feasible set of MPCC. Thus, TLNP(x∗) satisfies ACQ and GCQ. (In fact this
holds for general MPCCs under the previously defined MPCC-CQs.) But the considered tangent cones
and linearized tangent cones do not reflect the local structure of the feasible set of MPCC.

2.3 M-Stationarity 35



The problem with ACQ was that the linearized tangent cone by definition is always convex, whereas
the tangent cone of an MPCC usually is not. A possibility to adapt the definition of the linearized tangent
cone better to the structure of MPCC is given next.

Definition 2.14. Consider a point x∗ ∈ X feasible for MPCC. Then the MPCC-linearized tangent cone of
MPCC at x∗ is defined as

LMPCC
X (x∗) := {d ∈ Rn | ∇gi(x

∗)T d ≤ 0 ∀i ∈ Ig(x
∗),

∇hi(x
∗)T d = 0 ∀i = 1, . . . , p,

∇Gi(x
∗)T d = 0 ∀i ∈ I0+(x

∗),
∇Hi(x

∗)T d = 0 ∀i ∈ I+0(x
∗),

∇Gi(x
∗)T d ≥ 0 ∀i ∈ I00(x

∗),
∇Hi(x

∗)T d ≥ 0 ∀i ∈ I00(x
∗),

(∇Gi(x
∗)T d)(∇Hi(x

∗)T d) = 0 ∀i ∈ I00(x
∗)}.

This cone is related to the classical linearized tangent cone of X via

LMPCC
X (x∗) = LX (x

∗)∩ {d ∈ Rn | (∇Gi(x
∗)T d)(∇Hi(x

∗)T d) = 0 ∀i ∈ I00(x
∗)}.

Consequently, we always have the inclusion

LMPCC
X (x∗) ⊆ LX (x

∗)

and LMPCC
X (x∗) can be nonconvex. Moreover, one can show (see Exercise 2.7) that the inclusion

TX (x
∗) ⊆ LMPCC

X (X ∗)

also holds for all x∗ ∈ X . This motivates the following definition.

Definition 2.15. Consider a point x∗ ∈ X feasible for MPCC.

(a) MPCC Abadie CQ (MPCC-ACQ) holds at x∗ if

TX (x
∗) = LMPCC

X (x∗).

(g) MPCC Guignard CQ (MPCC-GCQ) holds at x∗ if

TX (x
∗)◦ = LMPCC

X (x∗)◦.

Since we defined MPCC-ACQ and MPCC-GCQ differently from the rest of the MPCC-CQs, one may ask
how the relation between them is. So far, the weakest MPCC-CQ we have introduced, was MPCC-CPLD.
And one can show that, same as in the standard NLP case, MPCC-CPLD implies MPCC-ACQ.

Theorem 2.16. Consider a point x∗ ∈ X feasible for MPCC. If MPCC-CPLD holds at x∗ then so does MPCC-
ACQ.

Proof. For the given point x∗ consider again the tightened programs TNLP(x∗, I)

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

Gi(x)≥ 0, Hi(x) = 0 ∀i ∈ I+0(x
∗)∪ I ,

Gi(x) = 0, Hi(x)≥ 0 ∀i ∈ I0+(x
∗)∪ I c
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MPCC-LICQ MPCC linear CQ

MPCC-MFCQ MPCC-CRCQ

MPCC-CPLD

MPCC-ACQ

MPCC-GCQ

Figure 2.5: Relations between MPCC-CQs

for all subsets I ⊆ I00(x∗).
One can show that MPCC-CPLD implies standard CPLD for all TNLP(x∗, I), see Exercise 2.8. From

nonlinear optimization we know that this implies that Abadie CQ for TNLP(x∗, I) also holds at x∗. Thus,
we have

TX I
(x∗) = LX I

(x∗) = {d ∈ Rn | ∇gi(x
∗)≤ 0 ∀i ∈ Ig(x

∗),

∇h(x∗)T d = 0,

∇Gi(x
∗)T d = 0 ∀i ∈ I0+(x

∗)∪ I ,

∇Hi(x
∗)T d = 0 ∀i ∈ I+0(x

∗)∪ I c,

∇Gi(x
∗)T d ≥ 0 ∀i ∈ I c,

∇Hi(x
∗)T d ≥ 0 ∀i ∈ I}

for all I ⊆ I00(x∗). Since we already know that

TX (x
∗) =

⋃

I⊆I00

TX I
(x∗),

we thus obtain

TX (x
∗) =

⋃

I⊆I00

{d ∈ Rn | ∇gi(x
∗)≤ 0 ∀i ∈ Ig(x

∗),

∇h(x∗)T d = 0,

∇Gi(x
∗)T d = 0 ∀i ∈ I0+(x

∗),
∇Hi(x

∗)T d = 0 ∀i ∈ I+0(x
∗),

∇Gi(x
∗)T d ≥ 0,∇Hi(x

∗)T d = 0 ∀i ∈ I c,

∇Gi(x
∗)T d = 0,∇Hi(x

∗)T d ≥ 0 ∀i ∈ I}= LMPCC
X (x∗).

Thus, MPCC-ACQ holds at x∗.

The relations between all MPCC-CQs introduced so far are collected in Figure 2.5.

2.3.2 M-Stationarity

Recall that we are still looking for a necessary optimality condition for MPCCs, which is stronger than
A- and C-stationarity but holds under weaker MPCC-CQs than MPCC-LICQ. To derive the M-stationarity
conditions, we begin with an argument similar to the KKT conditions.
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Let x∗ ∈ X be a local minimum of MPCC. Then x∗ is B-stationary, i.e.

∇ f (x∗)T d ≥ 0 ∀d ∈ TX (x
∗).

Contrary to the KKT conditions/S-stationarity, we now only assume that MPCC-GCQ holds at x∗. Then
we obtain

−∇ f (x∗) ∈ TX (x
∗)◦ = LMPCC

X (x∗)◦

and thus

∇ f (x∗)T ≥ 0 ∀d ∈ LMPCC
X (x∗).

This implies that d∗ = 0 is the (global) minimum of

min
d
∇ f (x∗)T d s.t. d ∈ LMPCC

X (x∗).

Due to the definition of the MPCC linearized tangent cone, this is an MPCC with affine constraints. To
simplify the feasible set even more, we define D := D1 ∩ D2, where

D1 = {(d, u, v ) ∈ Rn+2|I00| | ∇gi(x
∗)T d ≤ 0 ∀i ∈ Ig(x

∗),

∇hi(x
∗)T d = 0 ∀i = 1, . . . , p,

∇Gi(x
∗)T d = 0 ∀i ∈ I0+(x

∗),
∇Hi(x

∗)T d = 0 ∀i ∈ I+0(x
∗),

∇Gi(x
∗)T d − ui = 0 ∀i ∈ I00(x

∗),
∇Hi(x

∗)T d − vi = 0 ∀i ∈ I00(x
∗)},

D2 = {(d, u, v ) ∈ Rn+2|I00| | 0≤ u⊥ v ≥ 0}

So we separate the “simple” constraints from the “complicated” ones by introducing slack variables u, v
and collecting the standard constraints in D1 and the complementarity constraints with i ∈ I00(x∗) in
D2. Obviously d is feasible for the affine MPCC if and only if (d, GI00

(x∗), HI00
(x∗)) ∈ D. Consequently,

(0, 0,0)T is a solution of

min
(d,u,v )

∇ f (x∗)T d s.t. (d, u, v ) ∈ D = D1 ∩ D2.

Thus, (0,0, 0)T is B-stationary and therefore

−





∇ f (x∗)
0
0



 ∈ TD(0,0, 0)◦ = TD1∩D2
(0,0, 0)◦.

Since both D1 and D2 have a simple structure (D1 is affine), we can compute the corresponding tangent
and polar cones

TD1
(0, 0,0) = LD1

(0,0, 0) = {(s1, s2, s2) | ∇gi(x
∗)T s1 ≤ 0 ∀i ∈ Ig(x

∗),

∇hi(x
∗)T s1 = 0 ∀i = 1, . . . , p,

∇Gi(x
∗)T s1 = 0 ∀i ∈ I0+(x

∗),
∇Hi(x

∗)T s1 = 0 ∀i ∈ I0+(x
∗),

∇Gi(x
∗)T s1 − (s2)i = 0 ∀i ∈ I00(x

∗),
∇Hi(x

∗)T s1 − (s3)i = 0 ∀i ∈ I00(x
∗)},
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TD1
(0, 0,0)◦ = {w | w=

∑

i∈Ig

λi





∇gi(x∗)
0
0



+
p
∑

i=1

µi





∇hi(x∗)
0
0



+
∑

i∈I0+

γi





∇Gi(x∗)
0
0





+
∑

i∈I+0

νi





∇Hi(x∗)
0
0



+
∑

i∈I00

γi





∇Gi(x∗)
−ei
0



+
∑

i∈I00

νi





∇Hi(x∗)
0
−ei



 ,

λ≥ 0}

and

TD2
(0,0, 0) = {(s1, s2, s2) | 0≤ s2 ⊥ s3 ≥ 0},

TD2
(0, 0,0)◦ = {(w1, w2, w3) | w2 ≤ 0, w3 ≤ 0}.

Now to be able to use these formulae, we have to figure out how TD1
(0, 0,0)◦ and TD2

(0,0, 0)◦ are
related to TD1∩D2

(0, 0,0)◦. Unfortunately, while we have the rules

TA∪B(x) = TA(x)∪ TB(x) and TA∪B(x)
◦ = TA(x)

◦ ∩ TB(x)
◦

for unions of sets, there are in general no such calculus rules for intersections of sets.

Example 2.17. Consider

A= {x ∈ R | x sin 1
x = 0} and B = {x ∈ R | x cos 1

x = 0}.

Then A∩B = {0} and thus TA∩B(0) = {0}, TA∩B(0)◦ = R. On the other hand, we obtain TA(0) = TB(0) = R
and thus TA(0)◦ = TB(0)◦ = {0}. Consequently, for this example

TA∩B(0) = {0} 6= R= TA(0)∩ TB(0).

Also for the polar cones, we see TA∩B(0)◦ = R but all intuitive combinations in this example we obtain
(TA(0)∩ TB(0))◦ = TA(0)◦ ∪ TB(0)◦ = TA(0)◦ + TB(0)◦ = {0}.

We will later show that for certain cones the intersection of sets can be realized by adding the respective
cones. However, for the polar cone of the (Bouligand) tangent cone, we already know that in general

TD1∩D2
(0,0, 0)◦ 6⊆ TD1

(0,0, 0)◦ + TD2
(0,0, 0)◦

because otherwise our formulae for the polar cones would imply that every local minimum of MPCC is S-
stationary under MPCC-GCQ. But we have seen an example, where the local minimum is not S-stationary
even under the stronger MPCC-MFCQ.

To solve this problem, we use the limiting normal cone, which has better calculus properties. To do so,
recall that we know

−





∇ f (x∗)
0
0



 ∈ N F (0,0, 0) = N F
D1∩D2

(0,0, 0) ⊆ N M
D1∩D2

(0, 0,0)

where

D1 = {(d, u, v ) ∈ Rn+2|I00| | ∇gi(x
∗)T d ≤ 0 ∀i ∈ Ig(x

∗),

∇hi(x
∗)T d = 0 ∀i = 1, . . . , p,

∇Gi(x
∗)T d = 0 ∀i ∈ I0+(x

∗),
∇Hi(x

∗)T d = 0 ∀i ∈ I+0(x
∗),

∇Gi(x
∗)T d − ui = 0 ∀i ∈ I00(x

∗),
∇Hi(x

∗)T d − vi = 0 ∀i ∈ I00(x
∗)},

D2 = {(d, u, v ) ∈ Rn+2|I00| | 0≤ u⊥ v ≥ 0}.
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We have to show that the set-valued map

M(y) := {(d, u, v ) ∈ D1 | (d, u, v ) + y ∈ D2}

is a polyhedral set-valued map. To see this, consider the graph

graph(M) = {(y, d, u, v ) | (d, u, v ) ∈ D1, (d, u, v ) + y ∈ D2}
= {(y, d, u, v ) | ∇gi(x

∗)T d ≤ 0 ∀i ∈ Ig(x
∗),

∇hi(x
∗)T d = 0 ∀i = 1, . . . , p,

∇Gi(x
∗)T d = 0 ∀i ∈ I0+(x

∗),
∇Hi(x

∗)T d = 0 ∀i ∈ I+0(x
∗),

∇Gi(x
∗)T d − ui = 0 ∀i ∈ I00(x

∗),
∇Hi(x

∗)T d − vi = 0 ∀i ∈ I00(x
∗),

0≤ u− yu ⊥ v + yv ≥ 0}
=

⋃

I⊆I00

{(y, d, u, v ) | ∇gi(x
∗)T d ≤ 0 ∀i ∈ Ig(x

∗),

∇hi(x
∗)T d = 0 ∀i = 1, . . . , p,

∇Gi(x
∗)T d = 0 ∀i ∈ I0+(x

∗),

∇Hi(x
∗)T d = 0 ∀i ∈ I+0(x

∗),

∇Gi(x
∗)T d − ui = 0 ∀i ∈ I00(x

∗),

∇Hi(x
∗)T d − vi = 0 ∀i ∈ I00(x

∗),

(u− yu)i = 0, (v + yv )i ≥ 0 ∀i ∈ I

(u− yu)i ≥ 0, (v + yv )i ≥ 0 ∀i ∈ I00(x
∗) \ I},

which is obviously the union of finitely many polyhedra.
Thus, M is calm, which implies that

N M
D1∩D2

(0,0, 0) ⊆ N M
D1
(0,0, 0) + N M

D2
(0, 0,0).

Since D1 is polyhedral convex, we have

N M
D1
(0,0, 0) = N F

D1
(0,0, 0) = TD1

(0, 0,0)◦

= {w | w=
∑

i∈Ig

λi





∇gi(x∗)
0
0



+
p
∑

i=1

µi





∇hi(x∗)
0
0



+
∑

i∈I0+

γi





∇Gi(x∗)
0
0





+
∑

i∈I+0

νi





∇Hi(x∗)
0
0



+
∑

i∈I00

γi





∇Gi(x∗)
−ei
0



+
∑

i∈I00

νi





∇Hi(x∗)
0
−ei



 ,

λ≥ 0}.

Using

C := {(a, b) ∈ R2 | 0≤ a ⊥ b ≥ 0},

we can write (up to a slight reordering of the components of u and v )

D2 = Rn × C p
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and thus obtain the limiting normal cone using the rules for cartesian products as

N M
D2
(0, 0,0) = {w= (wd , wu, wv ) | wd = 0,

(wu)i(wv )i = 0 or (wu)i ≤ 0, (wv )i ≤ 0 ∀i ∈ I00(x
∗)}.

Putting all pieces together, our optimality condition thus reads

−





∇ f (x∗)
0
0



 ∈ N F
D1∩D2

(0,0, 0) ⊆ N M
D1∩D2

(0,0, 0) ⊆ N M
D1
(0, 0,0) + N M

D2
(0,0, 0)

and implies

−∇ f (x∗) =
∑

i∈Ig

λi∇gi(x
∗) +

p
∑

i=1

µi∇hi(x
∗) +

∑

i∈I0+

γi∇Gi(x
∗)

+
∑

i∈I+0

νi∇Hi(x
∗) +

∑

i∈I00

γi∇Gi(x
∗) +

∑

i∈I00

νi∇Hi(x
∗),

0 = −γi + (wu)i ∀i ∈ I00(x
∗),

0 = −νi + (wv )i ∀i ∈ I00(x
∗),

where λ≥ 0 and (wu)i(wv )i = 0 or (wu)i ≤ 0, (wv )i ≤ 0 for all i ∈ I00(x∗).
Bringing this into a form similar to our previous optimality conditions yields:

Definition 2.18. A point x∗ ∈ X feasible for MPCC is called M-stationary (Mordukhovich), if there exist
multipliers λ ∈ Rm, µ ∈ Rp and γ,ν ∈ Rq such that

∇ f (x∗) +∇g(x∗)λ+∇h(x∗)µ−∇G(x∗)γ−∇H(x∗)ν= 0,

0≥ g(x∗)⊥ λ≥ 0,

h(x∗) = 0,

G(x∗)≥ 0, H(x∗)≥ 0,

νi = 0 ∀i ∈ I0+(x
∗),

γi = 0 ∀i ∈ I+0(x
∗).

and additionally

γi ·µi = 0 or γi ≥ 0,νi ≥ 0 ∀i ∈ I00(x
∗).

Due to our derivation of the M-stationarity conditions, we have already proven the following result.

Theorem 2.19. Consider a local minimum x∗ ∈ X of MPCC, where MPCC-GCQ holds. Then x∗ is M-
stationary (and thus also C-, A- and W-stationary).

Consequently M-stationarity is a necessary optimality condition, which is not much weaker than S-
stationarity but, contrary to S-stationarity, holds under weak MPCC-CQs such as MPCC-GCQ.

To illustrate the advantage of M-stationarity over weaker stationarity concepts such as C-stationarity,
consider the following example:

Example 2.20. Consider the MPCC

min
x∈R2
(x1 − 1)2 + (x2 − 1)2 s.t. 0≤ x1 ⊥ x2 ≥ 0.

2.3 M-Stationarity 41



S-stationarity

necessary under MPCC-LICQ

B-stationarity

necessary without any CQ

M-stationarity

necessary under MPCC-GCQ

C-stationarity

necessary under MPCC-GCQ

A-stationarity

necessary under MPCC-GCQ

W-stationarity

necessary under MPCC-GCQ

Figure 2.6: Relations between first order necessary conditions for MPCCs

Since we want to minimize the euclidean distance to the point (1, 1) but can only move inside the feasible
set, this problem has two global minima (1,0) and (0, 1) and a local maximum at x∗ = (0, 0). Because
MPCC-LICQ holds, we immediately know that the global minima are S-stationary.

Let us now consider the local maximum x∗ = 0. There, the stationarity conditions

0=∇ f (x∗)− γ∇G(x∗)− ν∇H(x∗) =
�

−2
−2

�

− γ
�

1
0

�

− ν
�

0
1

�

are satisfied for γ= ν= −1
2 and thus the local maximum x∗ is C-stationary but not M-stationary.

By now, we have seen a lot of different stationarity concepts. The relations between them are collected
in Figure 2.6. All stationarity concepts differ only in the conditions on the multipliers γi,νi corresponding
to a biactive complementarity constraint i ∈ I00(x∗). The corresponding “feasible sets” for these biactive
multipliers are given in Figure 2.7.

2.4 Exercises

Exercise 2.1. Let f : Rn → R be continuously differentiable and Z ⊆ Rn nonempty. Prove that every
local minimum x∗ ∈ Z of f on Z has the property

f ′(x∗; d) =∇ f (x∗)T d ≥ 0 ∀d ∈ TZ(x
∗).

Since TZ(x∗) is the Bouligand tangent cone of Z at x∗, this condition is sometimes called Bouligand
stationarity (B-stationarity).

Exercise 2.2. For g : Rn→ Rm and h : Rn→ Rp consider the feasible set

Z := {x ∈ Rn | g(x)≤ 0, h(x) = 0}.

For a given point x∗ ∈ Z define the linearized feasible set as

Z l := {x ∈ Rn | g(x∗) +∇g(x∗)T (x − x∗)≤ 0, h(x∗) +∇h(x∗)T (x − x∗) = 0}
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0 1
γi

1

νi

(a) W-stationarity

0 1
γi

1

νi

(b) A-stationarity

0 1
γi

1

νi

(c) C-stationarity

0 1
γi

1

νi

(d) M-stationarity

0 1
γi

1
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Figure 2.7: Sign constraints of the multipliers corresponding to i ∈ I00(x∗)

(a) Prove

TZ l (x∗) = LZ l (x∗) = LZ(x
∗).

(b) Compare Z and Z l for

Z = {x ∈ R2 | x1 ≥ 0, x2 ≥ 0, x1 x2 = 0}

and x∗ = (1,0) as well as x∗ = (0,0).

Exercise 2.3. Consider matrices A ∈ Rm×n, B ∈ Rm×p and C ∈ Rm×q. Then Motzkin’s transposition
theorem states that either the system

AT y > 0, BT y ≥ 0, C T y = 0

has a solution y ∈ Rn or the system

Ax1 + Bx2 + C x3 = 0,

x1 ≥ 0, x1 6= 0, x2 ≥ 0

has a solution (x1, x2, x3) ∈ Rm+p+q, but never both. Here, AT Y > 0 means that all components of the
vector AT y are positive.

(a) Prove the theorem.

(b) In the theorem the matrices B and C can be omitted but not A. Why is the theorem wrong if the
matrix A is omitted?

Hint: The Farkas Lemma from linear or nonlinear optimization may be useful.
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Exercise 2.4. Consider the standard NLP

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0

with f : Rn → R, g : Rn → Rm and h : Rn → Rp continuously differentiable and denote the feasible set
by Z ⊆ Rn. Then positive linear independence CQ (PLICQ) is said to hold at a feasible point x∗ ∈ Z if the
gradients

∇gi(x
∗)(i ∈ Ig(x

∗)) and ∇hi(x
∗)(i = 1, . . . , p)

are positively linearly independent, i.e. if

∑

i∈Ig (x∗)

λi∇gi(x
∗) +

p
∑

i=1

µi∇hi(x
∗) = 0

and λ≥ 0 implies (λ,µ) = 0.
Prove that PLICQ is equivalent to MFCQ.

Exercise 2.5. Consider the feasible set

X = {x ∈ Rn | g(x)≤ 0, h(x) = 0, G(x)≥ 0, H(x)≥ 0, G(x) ◦H(x) = 0}

for some continuously differentiable functions g : Rn → Rm, g : Rn → Rp, G, H : Rn → Rq. (Here, a ◦ b
denotes the componentwise product of two vectors.)

For an arbitrary feasible point x∗ ∈ X compute the linearized tangent cone LX (x∗) and the correspond-
ing polar cone LX (x∗)◦.

Hint: You can use that the polar cone of

K = {d | AT d ≤ 0, BT d = 0}

with some matrices A, B is given by

K◦ = {w= Aλ+ Bµ | λ≥ 0}.

Exercise 2.6. Consider the feasible set

Z := {x ∈ Rn | g(x)≤ 0, h(x) = 0, 0≤ G(x)⊥ H(x)≥ 0}

of our standard MPCC and for a given point x∗ ∈ X define the tightened feasible sets

ZI := {x ∈ Rn | g(x)≤ 0, h(x) = 0,

Gi(x) = 0, Hi(x)≥ 0 ∀i ∈ I0+(x
∗)∪ I ,

Gi(x)≥ 0, Hi(x) = 0 ∀i ∈ I+0(x
∗)∪ I c}

for arbitrary subsets I ⊆ I00(x∗). Show the following:

(a) For all I ⊆ I00(x∗) we have ZI ⊆ Z .

(b) There exists a radius r > 0 such that

Z ∩ Br(x
∗) =

⋃

I⊆I00(x∗)

ZI ∩ Br(x
∗).
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Exercise 2.7. Consider the standard MPCC with the feasible set X . Show that for all x∗ ∈ X the following
inclusion holds

TX (x
∗) ⊆ LMPCC

X (x∗).

Exercise 2.8. Consider a feasible point x∗ ∈ X of MPCC, where MPCC-CPLD holds. Prove that this
implies (standard) CPLD at x∗ for the tightened problems TNLP(x∗, I)

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

Gi(x)≥ 0, Hi(x) = 0 ∀i ∈ I+0(x
∗)∪ I ,

Gi(x) = 0, Hi(x)≥ 0 ∀i ∈ I0+(x
∗)∪ I c

for all subsets I ⊆ I00(x∗).

Exercise 2.9. Consider a general feasible set of the form

Z = {x ∈ Rn | F(x) ∈ D}

for some continuously differentiable map F : Rn→ RM and a nonempty set D ⊆ RM . Often (see below)
the set D has a much simpler structure than the set Z . This motivates the definition of the linearized
tangent cone as

Lgen
Z (x

∗) := {d ∈ Rn | ∇F(x∗)T d ∈ TD(F(x
∗))}.

(a) Write the feasible set of the standard NLP in the form Z = {x ∈ Rn | F(x) ∈ D} and show LZ(x∗) =
Lgen

Z (x
∗).

(b) Write the feasible set of the MPCC in the form Z = {x ∈ Rn | F(x) ∈ D} and show LMPCC
X (x∗) =

Lgen
Z (x

∗).

Exercise 2.10. Using normal cones, we can give shorter definitions of various stationarity conditions for
MPCCs. To this end, rewrite the feasible set as X = {x ∈ Rn | F(x) ∈ D} as in Exercise 2.9.

(a) Show that x∗ ∈ X is S-stationary if and only if

0 ∈ ∇ f (x∗) +∇F(x∗)T N F
D (F(x

∗)).

(b) Show that x∗ ∈ X is M-stationary if and only if

0 ∈ ∇ f (x∗) +∇F(x∗)T N M
D (F(x

∗)).

(c) The Clarke normal cone to a set Z at x∗ ∈ Z is defined as

N C
Z (x

∗) = conv N M
Z (x

∗).

Which stationarity concept is equivalent to

0 ∈ ∇ f (x∗) +∇F(x∗)T N C
D (F(x

∗))?
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3 Algorithms

MPCC Algorithms

smooth
relaxations

kinked
relaxations

inex-
actness

Here, we want to focus on one class of algorithms for MPCCs, the so called relaxation algorithms. The
basic idea of all relaxation schemes is to get rid of the complicated complementarity constraints

Gi(x)≥ 0, Hi(x)≥ 0, Gi(x)Hi(x) = 0 ∀i = 1, . . . , q

by replacing these conditions in a suitable way such that the corresponding relaxed problem has nicer
properties. The relaxed problem depends on a parameter t > 0 which has to be driven to zero in order
to reobtain the underlying MPCC.

3.1 Smooth Relaxation Methods

Probably the first attempt to use a relaxation idea for solving MPCCs goes back to Scholtes [30]. The
central idea of the relaxation scheme by Scholtes is to replace the MPCC by a sequence of parametrized
NLPs of the form

min f (x)
s.t. gi(x)≤ 0, ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,
Gi(x)≥ 0 ∀i = 1, . . . , q,
Hi(x)≥ 0 ∀i = 1, . . . , q,
Gi(x)Hi(x)≤ t ∀i = 1, . . . , q.

see Figure 3.1 for a geometric illustration.
We denote the relaxed problem by RS(t) and its feasible set by X S(t). Since, geometrically, this is a

global relaxation of the complementarity conditions, we call this approach the global relaxation method.
For the convergence analysis, some index sets are needed:

Ig(x) := {i | gi(x) = 0},
IG(x) := {i | Gi(x) = 0},
IH(x) := {i | Hi(x) = 0},

IGH(x; t) := {i | Hi(x)Gi(x) = t}.

The following is the most basic convergence result for the global relaxation method.
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0 t
Gi

t

Hi

Figure 3.1: Geometric interpretation of the relaxation method by Scholtes

Theorem 3.1. Let (tk)k ↓ 0 and let x k be a KKT point of RS(tk) with x k→ x∗ such that MPCC-MFCQ holds
at x∗. Then x∗ is a C-stationary point of (1.1).

Proof. Since x k is a KKT point of RS(tk) there exist multipliers (λk,µk,γk,νk,δk) such that

0 = ∇ f (x k) +
m
∑

i=1

λk
i∇gi(x

k) +
p
∑

i=1

µk
i∇hi(x

k)−
q
∑

i=1

γk
i∇Gi(x

k)

−
q
∑

i=1

νk
i∇Hi(x

k) +
q
∑

i=1

δk
i [Hi(x

k)∇Gi(x
k) + Gi(x

k)∇Hi(x
k)]

(3.1)

with

λk ≥ 0 and supp(λk) ⊆ Ig(x
k),

γk ≥ 0 and supp(γk) ⊆ IG(x
k),

νk ≥ 0 and supp(νk) ⊆ IH(x
k),

δk ≥ 0 and supp(δk) ⊆ IGH(x
k; tk)

for all k ∈ N. This implies

supp(γk)∩ supp(δk) = ;, supp(νk)∩ supp(δk) = ; (3.2)

for all k ∈ N. Moreover, for all k ∈ N sufficiently large, we have Ig(x k) ⊆ Ig(x∗), IG(x k) ⊆ I00(x∗) ∪
I0+(x∗), and IH(x k) ⊆ I00(x∗)∪ I+0(x∗).

Our next step is to define suitable new multipliers

γ̃k
i =







γk
i , if i ∈ supp(γk),
−δk

i Hi(x k), if i ∈ supp(δk) \ I+0(x∗),
0, else,

and

ν̃k
i =







νk
i , if i ∈ supp(νk),
−δk

i Gi(x k), if i ∈ supp(δk) \ I0+(x∗),
0, else.
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With these multipliers, we can rewrite (3.1) as

0 = ∇ f (x k) +
m
∑

i=1

λk
i∇gi(x

k) +
p
∑

i=1

µk
i∇hi(x

k)−
q
∑

i=1

γ̃k
i∇Gi(x

k)−
q
∑

i=1

ν̃k
i∇Hi(x

k)

+
∑

i∈I+0(x∗)

δk
i Hi(x

k)∇Gi(x
k) +

∑

i∈I0+(x∗)

δk
i Gi(x

k)∇Hi(x
k).

If we assume that the sequence {(λk,µk, γ̃k, ν̃k,δk
I+0(x∗)∪I0+(x∗)

)} was unbounded, then we can find a
subsequence K such that the normed sequence converges:

(λk,µk, γ̃k, ν̃k,δk
I+0∪I0+

)

‖(λk,µk, γ̃k, ν̃k,δk
I+0∪I0+

)‖
→K (λ,µ, γ̃, ν̃,δI+0∪I0+) 6= 0.

The equation above then yields

0 =
m
∑

i=1

λi∇gi(x
∗) +

p
∑

i=1

µi∇hi(x
∗)−

q
∑

i=1

γ̃i∇Gi(x
∗)−

q
∑

i=1

ν̃i∇Hi(x
∗)

where λ≥ 0 and for all k ∈ K sufficiently large

supp(λ) ⊆ Ig(x
k) ⊆ Ig(x

∗),

supp(γ̃) ⊆ IG(x
k)∪ IGH(x

k; tk) \ I+0(x
∗) ⊆ I00(x

∗)∪ I0+(x
∗),

supp(ν̃) ⊆ IH(x
k)∪ IGH(x

k; tk) \ I0+(x
∗) ⊆ I00(x

∗)∪ I+0(x
∗).

Additionally, (λ,µ, γ̃, ν̃) 6= 0 has to hold. Otherwise, δi > 0 would have to hold for at least one i ∈
I+0(x∗) ∪ I0+(x∗). Assume without loss of generality δi > 0 for an i ∈ I+0(x∗). This implies δk

i > 0 for
all k sufficiently large and consequently ν̃k

i = −δ
k
i Gi(x k) for those k. Because of i ∈ I+0(x∗), this yields

ν̃i = limk∈K −δk
i Gi(x k)< 0, a contradiction to our assumption ν̃= 0.

However, (λ,µ, γ̃, ν̃) 6= 0 is a contradiction to the prerequisite that MPCC-MFCQ holds in x∗.
Thus, we may assume without loss of generality that the sequence is convergent to some vector
(λ∗,µ∗, γ̃∗, ν̃∗,δ∗I+0(x∗)∪I0+(x∗)

). It is easy to see that λ∗ ≥ 0 and supp(λ∗) ⊆ Ig(x∗). According to the

definition of γ̃k and ν̃k, we have

supp(γ̃∗) ⊆ I00(x
∗)∪ I0+(x

∗), supp(ν̃∗) ⊆ I00(x
∗)∪ I+0(x

∗).

The continuous differentiability of f , g, h, G, H then implies

0=∇ f (x∗) +
m
∑

i=1

λ∗i∇gi(x
∗) +

p
∑

i=1

µ∗i∇hi(x
∗)−

q
∑

i=1

γ̃∗i∇Gi(x
∗)−

q
∑

i=1

ν̃∗i∇Hi(x
∗).

To prove the C-stationarity of x∗, it remains to show that γ̃∗i ν̃
∗
i ≥ 0 for all i ∈ I00(x∗). Assume that there

is an i ∈ I00(x∗) with γ̃∗i < 0 and ν̃∗i > 0 or with ν∗i < 0 and γ̃∗i > 0. We consider only the first case, the
second one can be treated similarly. Because of γ̃k

i ≥ 0, the condition γ∗i < 0 implies i ∈ supp(δk) for all
k ∈ N sufficiently large. This implies i /∈ supp(νk) in view of (3.2) and, therefore, ν̃∗i ≤ 0 in contradiction
to our assumption.

Note that the corresponding result in [30] assumes MPCC-LICQ and shows that the whole sequence
of multipliers corresponding to the KKT points x k converges. Here we assume the weaker MPCC-MFCQ
which, obviously, does not guarantee convergence of the corresponding sequence of multipliers. But
the proof shows that one can extract a sequence of multipliers which stays bounded and is, therefore,
convergent at least on a subsequence.

To see that this convergence results is sharp, i.e. without further assumptions one cannot expect more
than C-stationarity of the limit, consider the following example.
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Example 3.2. Consider the MPCC

min
x∈R2
(x1 − 1)2 + (x2 − 1)2 s.t. 0≤ x1 ⊥ x2 ≥ 0.

Then the global minima are (1, 0) and (0,1) and are S-stationary due to MPCC-LICQ. The point x∗ =
(0, 0) is a local maximum, but is C-stationary. And for t > 0 sufficiently small, the point (

p
t,
p

t) are
KKT points of the relaxed problem.

The assumption of x k being a KKT point of the relaxed problem RS(tk) is based on the existence of
multipliers. A priori, it is not clear that these multipliers really exist. The following result essentially
guarantees the existence of these multipliers by showing that MPCC-MFCQ at a feasible point x∗ of the
original MPCC implies that standard MFCQ holds for the relaxed problems RS(t), at least locally around
x∗.

Theorem 3.3. Let x∗ be feasible for (1.1) such that MPCC-MFCQ is satisfied at x∗. Then there exists a
neighborhood U(x∗) of x∗ and t̄ > 0 such that the following holds for all t ∈ (0, t̄]: If x ∈ U(x∗) is feasible
for RS(t), then standard MFCQ for RS(t) holds in x .

Proof. First note that, by continuity, for all x ∈ X S(t) sufficiently close to x∗, we have

Ig(x) ⊆ Ig(x∗),
IG(x) ⊆ I00(x∗)∪ I0+(x∗),
IH(x) ⊆ I00(x∗)∪ I+0(x∗),

IGH(x)∩ IG(x) = ;,
IGH(x)∩ IH(x) = ;.

(3.3)

Since MPCC-MFCQ holds, the gradients

{∇gi(x
∗) | i ∈ Ig(x

∗)} ∪
�

{∇hi(x
∗) | i = 1, . . . , p} ∪ {∇Gi(x

∗) | i ∈ I00(x
∗)∪ I0+(x

∗)} ∪ {∇Hi(x
∗) | i ∈ I00(x

∗)∪ I+0(x
∗)}
	

are positive-linearly independent. This implies that the set of gradients

{∇gi(x) | i ∈ Ig(x
∗)} ∪

�

{∇hi(x) | i = 1, . . . , p} ∪ {∇Gi(x) | i ∈ I00(x
∗)∪ I0+(x

∗)} ∪ {∇Hi(x) | i ∈ I00(x
∗)∪ I+0(x

∗)}
	

is also positive-linearly independent for all x ∈ X S(t) sufficiently close to x∗. Taking into account that

IG(x)∪
�

IGH(x)∩ I0+(x
∗)
�

∪
�

IGH(x)∩ I00(x
∗)
�

⊆ I00(x
∗)∪ I0+(x

∗)

and

IH(x)∪
�

IGH(x)∩ I+0(x
∗)
�

∪
�

IGH(x)∩ I00(x
∗)
�

⊆ I00(x
∗)∪ I+0(x

∗)

for all x ∈ X S(t) sufficiently close to x∗ and using the fact that Gi(x) > 0, Hi(x) ≈ 0 for all i ∈ I+0(x∗)
as well as Gi(x) ≈ 0, Hi(x) > 0 for all i ∈ I0+(x∗) whenever x is close to x∗, it follows that there is a
neighborhood U(x∗) such that the set of vectors

∇gi(x) (i ∈ Ig(x)),
∇hi(x) (i = 1, . . . , p),
∇Gi(x) (i ∈ IG(x)),
∇Hi(x) (i ∈ IH(x)),

Gi(x)∇Hi(x) +Hi(x)∇Gi(x) (i ∈ IGH(x)∩ I0+(x∗)),
Gi(x)∇Hi(x) +Hi(x)∇Gi(x) (i ∈ IGH(x)∩ I+0(x∗)),

∇Gi(x) (i ∈ IGH(x)∩ I00(x∗)),
∇Hi(x) (i ∈ IGH(x)∩ I00(x∗))

(3.4)
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is positive-linearly independent for all x ∈ X S(t)∩ U(x∗).
We now claim that standard MFCQ holds for the relaxed program RS(t) whenever x ∈ X S(t)∩ U(x∗).

To this end, take an arbitrary x ∈ X S(t)∩ U(x∗). We have to show that

0 =
∑

i∈Ig (x)

λi∇gi(x) +
p
∑

i=1

µi∇hi(x)−
∑

i∈IG(x)

αi∇Gi(x)

−
∑

i∈IH (x)

βi∇Hi(x) +
∑

i∈IGH (x)

γi(Gi(x)∇Hi(x) +Hi(x)∇Gi(x))
(3.5)

with µ ∈ Rp and λ,α,β ,γ≥ 0 holds only for the null vector. To see this, we rewrite (3.5) as

0 =
∑

i∈Ig (x)

λi∇gi(x) +
p
∑

i=1

µi∇hi(x)−
∑

i∈IG(x)

αi∇Gi(x)−
∑

i∈IH (x)

βi∇Hi(x)

+
∑

i∈IGH (x)∩(I0+(x∗)∪I+0(x∗))

γi(Gi(x)∇Hi(x) +Hi(x)∇Gi(x))

+
∑

i∈I00(x∗)∩IGH (x)

(γiGi(x))∇Hi(x) +
∑

i∈I00(x∗)∩IGH (x)

(γiHi(x))∇Gi(x).

(3.6)

Applying the positive-linear independence of the vectors from (3.4) to (3.6) and using (3.3), we imme-
diately obtain that all coefficients from (3.5) are zero, and this completes the proof.

An alternative but closely related smooth relaxation can be found in the paper [21] by Lin and
Fukushima. They suggest to relax the MPCC to

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

Gi(x)Hi(x)− t2 ≤ q0 ∀i = 1, . . . , q,

(Gi(x) + t)(Hi(x) + t)− t2 ≥ 0 ∀i = 1, . . . , q,

see Figure 3.2 for an illustration.

0 t
Gi

t

Hi

Figure 3.2: Geometric interpretation of the relaxation method by Lin and Fukushima

The relaxation method by Lin and Fukushima has exactly the same convergence properties ans the
one by Scholtes, which we discussed above.

Another, only local relaxation goes back to the paper [31] by Steffensen and Ulbrich. Here, the idea
is to relax the feasible set of MPCC only around the origin, i.e. around the critical biactive points. To do
so, one uses regularization functions, which can be seen as a smoothing of the absolute value function
around the origin.

Definition 3.4. θ : [−1,1]→ R is called a regularization function if it satisfies the following conditions:
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(a) θ is twice continuously differentiable on [−1,1];

(b) θ (−1) = θ (1) = 1;

(c) θ ′(−1) = −1 and θ ′(1) = 1;

(d) θ ′′(−1) = θ ′′(1) = 0;

(e) θ ′′(x)> 0 for all x ∈ (−1, 1).

Note that condition (e) implies that θ is strictly convex on [−1, 1]. The following result taken from
[31, Lemma 3.1] reveals an immediate but crucial property of all regularization functions.

Lemma 3.5. Let θ : [−1,1] → R be a regularization function. Then it holds that θ (x) > |x | for all
x ∈ (−1, 1).

Two simple examples of suitable regularization functions are

θ (x) :=
2
π

sin
�

π

2
x +

3π
2

�

+ 1 and θ (x) :=
1
8

�

−x4 + 6x2 + 3
�

,

cf. [31]. The second function is the Hermite interpolation polynomial satisfying the requirements from
Definition 3.4.

This idea leads to the following relaxation from [31] (cf. Figure 3.3 for an illustration)

min f (x)
s.t. gi(x)≤ 0, ∀i = 1, . . . , m,

h j(x) = 0 ∀ j = 1, . . . , p,
Gi(x)≥ 0 ∀i = 1, . . . , q,
Hi(x)≥ 0 ∀i = 1, . . . , q,
ΦSU(x; t)≤ 0 ∀i = 1, . . . , q

with

ΦSU : Rn→ Rq, ΦSU
i (x; t) := Gi(x) +Hi(x)−ϕ(Gi(x)−Hi(x); t) ∀i = 1, . . . , q

where

ϕ(·; t) : R→ R, ϕ(a; t) :=
§

|a|, if |a| ≥ t,
tθ ( a

t ), if |a|< t, (3.7)

and θ is a regularization function.

0 t
Gi

t

Hi

Figure 3.3: Geometric interpretation of the relaxation method by Steffensen and Ulbrich

This relaxation method still converges only to C-stationary points, but it suffices to assume MPCC-CPLD
as opposed to MPCC-MFCQ.
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3.2 Kinked Relaxation Methods

If one wants to ensure convergence of a relaxation method to more than C-stationary points, one either
has to impose additional assumptions on the sequence of KKT points, use second order information or
change the geometry of the feasible set of the relaxation.

Probably the first relaxation scheme, that can be guaranteed to converge to M-stationary points, can
be found [18] by Kadrani et al. They propose the following relaxation, see also Figure 3.4:

min f (x)
s.t. gi(x)≤ 0, ∀i = 1, . . . , m,

h j(x) = 0 ∀ j = 1, . . . , p,
Gi(x)≥ −t ∀i = 1, . . . , q,
Hi(x)≥ −t ∀i = 1, . . . , q,
(Gi(x)− t)(Hi(x)− t)≤ 0 ∀i = 1, . . . , q.

0 t
Gi

t

Hi

Figure 3.4: Geometric interpretation of the relaxation method by Kadrani et al.

To be precise, this method is not really a relaxation method, as the feasible sets of the relaxed problems
do not include the whole feasible set of MPCC. But one can show that this method converges to M-
stationary points under CC-CPLD. Furthermore, if MPCC-LICQ holds at x∗ ∈ X , then standard Guignard
CQ holds in all feasible points of the relaxed problem in a neighborhood. In fact, standard LICQ holds in
all feasible points of the relaxed problem in a neighborhood except for those “on the kink”.

To overcome the problem that the feasible set of the MPCC is not completely included in the feasible
set of the relaxed problems and that the feasible set of the relaxed problems is almost disconnected,
Kanzow and Schwartz suggested another relaxation scheme in [19].

Our relaxation is based on the function ϕ : R2→ R defined by

ϕ(a, b) =

¨

ab, if a+ b ≥ 0,

−1
2(a

2 + b2), if a+ b < 0.

This function has the following elementary properties.

Lemma 3.6. (a) ϕ is an NCP-function, i.e. ϕ(a, b) = 0 if and only if a ≥ 0, b ≥ 0, ab = 0.

(b) ϕ is continuously differentiable with gradient

∇ϕ(a, b) =











�

b
a

�

, if a+ b ≥ 0,
�

−a
−b

�

, if a+ b < 0.
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(c) ϕ has the property that

ϕ(a, b)
§

> 0, if a > 0 and b > 0,
< 0, if a < 0 or b < 0.

Based on this function, we define a continuously differentiable mapping Φ : Rn→ Rq componentwise
by

Φi(x; t) := ϕ
�

Gi(x)− t, Hi(x)− t
�

=

¨
�

Gi(x)− t
��

Hi(x)− t
�

, if Gi(x) +Hi(x)≥ 2t,
−1

2

�

(Gi(x)− t)2 + (Hi(x)− t)2
�

, if Gi(x) +Hi(x)< 2t,

where t ≥ 0 is an arbitrary parameter. With this function, we can formulate the relaxed problem RKS(t)
for t ≥ 0 as

min f (x) s.t. gi(x)≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,

Gi(x)≥ 0 ∀i = 1, . . . , q, (3.8)

Hi(x)≥ 0 ∀i = 1, . . . , q,

Φi(x; t)≤ 0 ∀i = 1, . . . , q.

Hence, in our approach, we replace the complementarity conditions

Gi(x)≥ 0, Hi(x)≥ 0, Gi(x)Hi(x) = 0 ∀i = 1, . . . , q

by the conditions

Gi(x)≥ 0, Hi(x)≥ 0, Φi(x; t)≤ 0 ∀i = 1, . . . , q

which, from a geometric point of view, gives a set of the form shown in Figure 3.5.

0 t
Gi

t

Hi

Figure 3.5: Geometric interpretation of the new regularization

Similar to the index sets used for MPCCs before, we define

Ig(x) := {i | gi(x) = 0},
IG(x) := {i | Gi(x) = 0},
IH(x) := {i | Hi(x) = 0},

IΦ(x; t) := {i | Φi(x; t) = 0}
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for t ≥ 0 and x feasible for RKS(t). We also use a partition of the index set IΦ(x; t) into the following
three subsets:

I00
Φ (x; t) := {i ∈ IΦ(x; t) | Gi(x)− t = 0, Hi(x)− t = 0},

I0+
Φ (x; t) := {i ∈ IΦ(x; t) | Gi(x)− t = 0, Hi(x)− t > 0},

I+0
Φ (x; t) := {i ∈ IΦ(x; t) | Gi(x)− t > 0, Hi(x)− t = 0}.

Note that these sets form a partition of IΦ(x; t) since the definition of Φ implies that

Φi(x; t) = 0 ⇐⇒ Gi(x)− t ≥ 0, Hi(x)− t ≥ 0,
�

Gi(x)− t
��

Hi(x)− t
�

= 0.

In view of Lemma 3.6, the function Φ is continuously differentiable with its gradient given by

∇Φi(x; t) =

¨

(Hi(x)− t)∇Gi(x) + (Gi(x)− t)∇Hi(x), if Gi(x) +Hi(x)≥ 2t,
−(Gi(x)− t)∇Gi(x)− (Hi(x)− t)∇Hi(x), if Gi(x) +Hi(x)< 2t

(3.9)

for all i = 1, . . . , q.
The following result summarizes some simple properties of the regularized program RKS(t).

Lemma 3.7. For t > 0 let X and X KS(t) be the feasible sets of the MPCC (1.1) and RKS(t), respectively.
Then the following three statements hold:

(a) X KS(0) = X .

(b) X KS(t1) ⊆ X KS(t2) for all 0≤ t1 ≤ t2.

(c)
⋂

t≥0 X KS(t) = X .

The previous result shows, in particular, that the feasible set X of the original MPCC is always con-
tained in the feasible set X KS(t) of the regularized program RKS(t) (in contrast to the approach by
Kadrani et al., and that our relaxation exhibits the desired behavior limt↓0 X KS(t) = X . Note also that,
from a geometric point of view, our regularized problem has a much nicer feasible set than the one by
Kadrani et al. which, we recall, consists of almost disconnected pieces.

If we solve RKS(tk) for a sequence {tk} ↓ 0 and obtain KKT points (x k,λk,µk,γk,νk,δk) of RKS(tk),
where x k→ x∗, what kind of MPCC-stationarity can we expect in x∗? The next theorem gives an answer
to this question.

Theorem 3.8. Let {tk} ↓ 0 and {(x k,λk,µk,γk,νk,δk)} be a sequence of KKT points of RKS(tk) with
x k→ x∗. If MPCC-CPLD holds in x∗, then x∗ is an M-stationary point of the MPCC (1.1).

Proof. Obviously, x∗ is feasible for the MPCC (1.1) and for all k ∈ N sufficiently large, we have

Ig(x
k) ⊆ Ig(x

∗),

IG(x
k)∪ I00

Φ (x
k; tk)∪ I0+

Φ (x
k; tk) ⊆ I00(x

∗)∪ I0+(x
∗), (3.10)

IH(x
k)∪ I00

Φ (x
k; tk)∪ I+0

Φ (x
k; tk) ⊆ I00(x

∗)∪ I+0(x
∗).

Since all (x k,λk,µk,γk,νk,δk) are KKT points of RKS(tk), we have

0 = ∇ f (x k) +
m
∑

i=1

λk
i∇gi(x

k) +
p
∑

i=1

µk
i∇hi(x

k)−
q
∑

i=1

γk
i∇Gi(x

k)−
q
∑

i=1

νk
i∇Hi(x

k)

+
q
∑

i=1

δk
i∇Φi(x

k; tk)
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with

λk
i = 0 ∀i /∈ Ig(x

k) and λk
i ≥ 0 ∀i ∈ Ig(x

k),

γk
i = 0 ∀i /∈ IG(x

k) and γk
i ≥ 0 ∀i ∈ IG(x

k),

νk
i = 0 ∀i /∈ IH(x

k) and νk
i ≥ 0 ∀i ∈ IH(x

k),

δk
i = 0 ∀i /∈ IΦ(x

k; t) and δk
i ≥ 0 ∀i ∈ IΦ(x

k; tk).

Since the representation of ∇Φi immediately gives ∇Φi(x k; tk) = 0 for all i ∈ I00
Φ (x

k; tk) and all k ∈ N,
we may also assume δk

i = 0 for all i ∈ I00
Φ (x

k; tk) and all k ∈ N. Thus, we can rewrite the equation above
as

0 = ∇ f (x k) +
m
∑

i=1

λk
i∇gi(x

k) +
p
∑

i=1

µk
i∇hi(x

k)−
q
∑

i=1

γk
i∇Gi(x

k)−
q
∑

i=1

νk
i∇Hi(x

k)

+
q
∑

i=1

δG,k
i ∇Gi(x

k) +
q
∑

i=1

δH,k
i ∇Hi(x

k)

where

δG,k
i =

¨

δk
i (Hi(x k)− tk), if i ∈ I0+

Φ (x
k; tk),

0, else,

δH,k
i =

¨

δk
i (Gi(x k)− tk), if i ∈ I+0

Φ (x
k; tk),

0, else.

Note that the multipliers δG,k and δH,k are nonnegative, too. Here, we may assume without loss of
generality that the gradients corresponding to nonvanishing multipliers in this equation are linearly
independent for all k ∈ N (note that this may change the multipliers, but a previously positive multiplier
will stay at least nonnegative and a vanishing multiplier will remain zero).

Our next step is to prove that the sequence {(λk,µk,γk,νk,δG,k,δH,k)} is bounded. Assuming the
contrary, we can find a subsequence K such that

(λk,µk,γk,νk,δG,k,δH,k)
‖(λk,µk,γk,νk,δG,k,δH,k)‖

→K (λ,µ,γ,ν,δG,δH) 6= 0.

Dividing by ‖(λk,µk,γk,νk,δG,k,δH,k)‖ and passing to the limit in the equation above yields

0 =
m
∑

i=1

λi∇gi(x
∗) +

p
∑

i=1

µi∇hi(x
∗)−

q
∑

i=1

γi∇Gi(x
∗)−

q
∑

i=1

νi∇Hi(x
∗)

+
q
∑

i=1

δG
i ∇Gi(x

∗) +
q
∑

i=1

δH
i ∇Hi(x

∗),

i.e., the gradients

{∇gi(x
∗) | i ∈ supp(λ)} ∪

�

{∇hi(x
∗) | i ∈ supp(µ)}

∪{∇Gi(x
∗) | i ∈ supp(γ)∪ supp(δG)} ∪ {∇Hi(x

∗) | i ∈ supp(ν)∪ supp(δH)}
	 (3.11)

are positive-linearly dependent. MPCC-CPLD guarantees that they remain linearly dependent in a whole
neighborhood. This, however, is a contradiction to the linear independence of these gradients in x k.
Here, we use

supp(λ,µ,γ,ν,δG,δH) ⊆ supp(λk,µk,γk,νk,δG,k,δH,k)
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for all k sufficiently large and (3.10).
Consequently, our assumption was wrong and thus the sequence {(λk,µk,γk,νk,δG,k,δH,k)} is

bounded. Therefore, we can assume without loss of generality that the whole sequence is convergent to
some limit (λ∗,µ∗,γ∗,ν∗,δG,∗,δH,∗) . Since IG(x k) ∩ I0+

Φ (x
k; tk) = ; and IH(x k) ∩ I+0

Φ (x
k; tk) = ; for all

k ∈ N, it is easy to see that the multipliers

γ̂i =







γ∗i if i ∈ supp(γ∗),
−δG,∗

i if i ∈ supp(δG,∗),
0 else

and ν̂i =







ν∗i if i ∈ supp(ν∗),
−δH,∗

i if i ∈ supp(δH,∗),
0 else

are well-defined, and we obtain

0 = ∇ f (x∗) +
m
∑

i=1

λ∗i∇gi(x
∗) +

p
∑

i=1

µ∗i∇hi(x
∗)−

q
∑

i=1

γ̂i∇Gi(x
∗)−

q
∑

i=1

ν̂i∇Hi(x
∗).

Here, λ∗ ≥ 0 and

supp(λ∗) ⊆ Ig(x
k) ⊆ Ig(x

∗),

supp(γ̂) = supp(γ∗)∪ supp(δG,∗) ⊆ IG(x
k)∪ I0+

Φ (x
k; tk) ⊆ I00(x

∗)∪ I0+(x
∗),

supp(ν̂) = supp(ν∗)∪ supp(δH,∗) ⊆ IH(x
k)∪ I+0

Φ (x
k; tk) ⊆ I00(x

∗)∪ I+0(x
∗)

for all k sufficiently large. Consequently, we have γ̂i = 0 for all i ∈ I+0(x∗) and ν̂i = 0 for all i ∈ I0+(x∗),
i.e., (x∗,λ∗,µ∗, γ̂, ν̂) is at least a weakly stationary point of the MPCC (1.1). To prove M-stationarity,
assume that there is an i ∈ I00(x∗) with γ̂i < 0 and ν̂i 6= 0 (the case γ̂i 6= 0 and ν̂i < 0 can be treated in
a symmetric way). The condition γ̂i < 0 implies i ∈ supp(δG,∗) ⊆ I0+

Φ (x
k; tk) for all k sufficiently large.

Because of

I0+
Φ (x

k; tk)∩
�

IH(x
k)∪ I+0

Φ (x
k; tk)

�

= ;

for all k ∈ N, this yields ν̂i = 0 in contradiction to our assumption.

Analogously to the relaxation method by Kardani et al. one can show that if MPCC-LICQ holds at
x∗ ∈ X , then the relaxed problems locally satisfy LICQ almost everywhere and Guignard CQ everywhere,
see [19] for the details.

3.3 The Effects of Inexactness

In the previous convergence results we assumed that we are able to compute KKT point sof the relaxed
problems. However, in practice we usually end up with inexact KKT points:

Definition 3.9. Let x∗ ∈ Rn and ε > 0 be given. If there exist vectors λ ∈ Rm,µ ∈ Rp such that













∇ f (x) +
m
∑

i=1

λi∇gi(x
∗) +

p
∑

i=1

µi∇hi(x
∗)













∞
≤ ε,

gi(x
∗)≤ ε, λi ≥ −ε, |gi(x

∗)λi| ≤ ε ∀i = 1, . . . , m,
|hi(x

∗)| ≤ ε ∀ i = 1, . . . , p,

(3.12)

x∗ is called an ε-stationary point of the NLP

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0.

.
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Thus, it es interesting to study which effect inexact KKT points have on the convergence of the afore
mentioned relaxation methods, see [20] for more details. We begin by discussing the effects on the
Scholtes relaxation.

Theorem 3.10. Let {tk} ↓ 0, εk = O(tk), {x k} be a sequence of εk-stationary points of NLPS(tk) with
multipliers (λk,µk,γk,νk,δk), and assume that x k → x∗. If MPEC-MFCQ holds in x∗, then x∗ is a C-
stationary point of the MPEC.

Proof. Since all x k are εk-stationary points of NLP(tk), we have












∇ f (x k) +
m
∑

i=1

λk
i∇gi(x

k) +
p
∑

i=1

µk
i∇hi(x

k)

−
q
∑

i=1

γk
i∇Gi(x

k)−
q
∑

i=1

νk
i∇Hi(x

k) +
q
∑

i=1

δk
i∇Φ

S
i (x

k; tk)













∞
≤ εk

with
gi(x k)≤ εk, λk

i ≥ −εk, |λk
i gi(x k)| ≤ εk ∀i = 1, . . . , m,

|hi(x k)| ≤ εk ∀i = 1, . . . , p,
Gi(x k)≥ −εk, γk

i ≥ −εk, |γk
i Gi(x k)| ≤ εk ∀i = 1, . . . , q,

Hi(x k)≥ −εk, νk
i ≥ −εk, |νk

i Hi(x k)| ≤ εk ∀i = 1, . . . , q,
ΦS

i (x
k; tk)≤ εk, δk

i ≥ −εk, |δk
i Φ

S
i (x

k; tk)| ≤ εk ∀i = 1, . . . , q,

where ∇ΦS
i (x

k; tk) = Hi(x k)∇Gi(x k) + Gi(x k)∇Hi(x k). Obviously, the limit x∗ is feasible for the MPEC
(1.1). We define the multipliers

δG,k
i :=

¨

δk
i Hi(x k) if i ∈ I00(x∗)∪ I0+(x∗),

0 if i ∈ I+0(x∗),

δH,k
i :=

¨

δk
i Gi(x k) if i ∈ I00(x∗)∪ I+0(x∗),

0 if i ∈ I0+(x∗).

Then we have












∇ f (x k) +
m
∑

i=1

λk
i∇gi(x

k) +
p
∑

i=1

µk
i∇hi(x

k)

−
q
∑

i=1

γk
i∇Gi(x

k) +
q
∑

i=1

δG,k
i ∇Gi(x

k) +
∑

i∈I+0

δk
i Hi(x

k)∇Gi(x
k)

−
q
∑

i=1

νk
i∇Hi(x

k) +
q
∑

i=1

δH,k
i ∇Hi(x

k) +
∑

i∈I0+

δk
i Gi(x

k)∇Hi(x
k)













∞
≤ εk.

We claim that the multipliers (λk,µk,γk,νk,δG,k,δH,k,δk
I+0∪I0+

) are bounded. If the sequence were un-
bounded, we could assume without loss of generality convergence of the sequence

(λk,µk,γk,νk,δG,k,δH,k,δk
I+0∪I0+

)

‖(λk,µk,γk,νk,δG,k,δH,k,δk
I+0∪I0+

)‖
→ (λ̄, µ̄, γ̄, ν̄, δ̄G, δ̄H , δ̄I+0∪I0+) 6= 0.

Then the εk-stationarity of x k yields

m
∑

i=1

λ̄i∇gi(x
∗) +

p
∑

i=1

µ̄i∇hi(x
∗)−

q
∑

i=1

γ̄i∇Gi(x
∗)−

q
∑

i=1

ν̄i∇Hi(x
∗)

+
q
∑

i=1

δ̄G
i ∇Gi(x

∗) +
q
∑

i=1

δ̄H
i ∇Hi(x

∗) = 0,
(3.13)
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where we took into account that Hi(x k) → 0 (i ∈ I+0(x∗)) and Gi(x k) → 0 (i ∈ I0+(x∗)). For all
i = 1, . . . , m, the εk-stationarity implies λ̄i ≥ 0. If λ̄i > 0, we have λk

i > c for some constant c > 0 and all
k sufficiently large. This yields

0≤ |gi(x
k)| ≤

εk

|λk
i |
≤
εk

c
→ 0

due to εk ↓ 0 and thus i ∈ Ig(x∗). Analogously, we have γ̄i ≥ 0 for all i = 1, . . . , q and γ̄i > 0 implies
Gi(x k) → 0 and thus i ∈ I00(x∗) ∪ I0+(x∗), and also ν̄i ≥ 0 for all i = 1, . . . , q with ν̄i > 0 implying
Hi(x k)→ 0 and thus i ∈ I00(x∗)∪ I+0(x∗).

By definition δ̄G
i 6= 0 implies i ∈ I00(x∗)∪ I0+(x∗) and δ̄H

i 6= 0 is only possible if i ∈ I00(x∗)∪ I+0(x∗).
Thus, we know supp(λ̄) ⊆ Ig(x∗) and

supp(γ̄)∪ supp(δ̄G) ⊆ I00(x
∗)∪ I0+(x

∗), supp(ν̄)∪ supp(δ̄H) ⊆ I00(x
∗)∪ I+0(x

∗).

Our next step is to show

supp(γ̄)∩ supp(δ̄G) = ; and supp(ν̄)∩ supp(δ̄H) = ;.

Without loss of generality, we consider only the case i ∈ supp(γ̄) ∩ supp(δ̄G) and show that this is
impossible. By the definition of γ̄ and δ̄G, this would imply |γk

i | →∞ and |δG,k
i | = |δ

k
i Hi(x k)| →∞ for

k→∞. Due to Hi(x k)→ Hi(x∗), the latter implies |δk
i | →∞. The εk-stationarity then yields

0≤
|Gi(x k)|
εk

≤
1

|γk
i |
→ 0 for k→∞.

Analogously, we obtain

0≤
|Gi(x k)Hi(x k)− tk|

εk
≤

1

|δk
i |
→ 0 for k→∞.

Together, these two limits imply tk
εk
→ 0, a contradiction to εk = O(tk).

Hence, if (λ̄, µ̄, γ̄, ν̄, δ̄G, δ̄H) 6= 0, (3.13) yields a contradiction to MPEC-MFCQ. If, on the other hand,
(λ̄, µ̄, γ̄, ν̄, δ̄G, δ̄H) = 0, there has to be an i ∈ I0+(x∗) ∪ I+0(x∗) with δ̄i 6= 0. First consider the case
i ∈ I0+(x∗). Then by definition

δ̄G
i = lim

k→∞

δk
i Hi(x k)

‖(λk,µk,γk,νk,δG,k,δH,k,δk
I+0∪I0+

)‖
= δ̄i Hi(x

∗)
︸ ︷︷ ︸

>0

6= 0,

a contradiction to the assumption δ̄G
i = 0. In an analogous way, we obtain a contradiction in the case

i ∈ I+0(x∗).
Consequently, the sequence {(λk,µk,γk,νk,δG,k,δH,k,δk

I+0∪I0+
)} is bounded and therefore converges

to some limit (λ∗,µ∗, γ̃, ν̃, δ̃G, δ̃H , δ̃I+0∪I0+) at least on a subsequence. By passing to this subsequence, we
can assume convergence on the whole sequence. Using the same arguments as before, it is easy to see
that λ∗ ≥ 0, γ̃≥ 0, ν̃≥ 0, and supp(λ∗) ⊆ Ig(x∗),

supp(γ̃)∪ supp(δ̃G) ⊆ I00(x
∗)∪ I0+(x

∗), supp(ν̃)∪ supp(δ̃H) ⊆ I00(x
∗)∪ I+0(x

∗).

Let us define the multipliers γ∗ := γ̃ − δ̃G and ν∗ := ν̃ − δ̃H . Then x∗ together with the multipliers
(λ∗,µ∗,γ∗,ν∗) is a weakly stationary point of the MPEC (1.1).
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In order to prove C-stationarity of x∗, assume that there were an i ∈ I00(x∗) such that γ∗i ν
∗
i < 0.

We consider without loss of generality only the case γ∗i < 0,ν∗i > 0, the other one can be treated the
same way. Since we know γ̃i ≥ 0, the assumption γ∗i < 0 implies δ̃G

i > 0. Due to i ∈ I00(x∗) and
δ̃G

i = limk→∞δ
G,k
i = limk→∞δ

k
i Hi(x k), we obtain |δk

i | →∞ for k→∞ and consequently we can again
conclude

0≤
|Gi(x k)Hi(x k)− tk|

εk
≤

1

|δk
i |
→ 0 for k→∞. (3.14)

If ν̃i > 0, the εk-stationarity would imply

0≤
|Hi(x k)|
εk

≤
1

νk
i

→
1
ν̃i

for k→∞,

i.e. the quotient Hi(xk)
εk

would remain bounded. Due to i ∈ I00(x k), this together with (3.14) would yield
tk
εk
→ 0, a contradiction to εk = O(tk).
Consequently, ν̃i = 0 and, therefore, δ̃H

i < 0. Together with δ̃G
i > 0, the definition of δ̃H

i , δ̃G
i and the

εk-stationarity then implies δk
i → +∞ for k→∞ and Gi(x k)< 0, Hi(x k)> 0 for all k sufficiently large.

Using (3.14), this would imply

0<
tk

εk
<
|Gi(x k)Hi(x k)− tk|

εk
→ 0 for k→∞,

once more a contradiction to εk = O(tk). Thus, x∗ with the multipliers (λ∗,µ∗,γ∗,ν∗) is a C-stationary
point of the MPEC (1.1).

The following example illustrates that we cannot guarantee C-stationarity of the limit x∗ without the
assumption εk = O(tk) used in Theorem 3.10.

Example 3.11. Consider the MPEC

min x2 − x1 s.t. x1 ≥ 0, x2 ≥ 0, x1 x2 = 0.

Now, for an arbitrary t > 0 the conditions for εt -stationarity of NLPS(t) read as follows:













�

−1
1

�

− γt
�

1
0

�

− νt
�

0
1

�

+δt
�

x t
2

x t
1

�













∞
≤ εt ,

x t
1 ≥ −εt , γ

t ≥ −εt , |γt x t
1| ≤ εt ,

x t
2 ≥ −εt , ν

t ≥ −εt , |νt x t
2| ≤ εt ,

x t
1 x t

2 − t ≤ εt , δ
t ≥ −εt , |δt(x t

1 x t
2 − t)| ≤ εt .

If we choose εt = 2
p

t, it is easy to verify that x t = (
p

t,
p

t) together with the multipliers γt = 0, νt = 2
and δt = 1p

t is an εt -stationary point of NLPS(t). However, for t ↓ 0, the sequence x t converges to the
origin, which is a weakly but not C-stationary point of the MPEC.

So the convergence properties of the Scholtes relaxation method stay the same if we replace exact KKT
points of the relaxed problems by inexact approximations as long as the accuracy εk decreases at least
as fast as the relaxation parameter tk. One can show that the relaxation method by Lin and Fukushima
enjoys the same favorable property. However, for all other relaxation methods, if one replaces KKT points
by inexact approximations, one in general only obtains weakly stationary limits. We illustrate this in the
example of the relaxation from Kanzow and Schwartz.
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Theorem 3.12. Let {tk} ↓ 0, {εk} ↓ 0, {x k} be a sequence of εk-stationary points of NLPKS(tk), and assume
that x k→ x∗ with MPEC-MFCQ holding in x∗. Then x∗ is a weakly stationary point of the MPEC.

Proof. Since all x k are εk-stationary points of NLP(tk), we have
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gi(x k)≤ εk, λk

i ≥ −εk, |λk
i gi(x k)| ≤ εk ∀i = 1, . . . , m,

|hi(x k)| ≤ εk ∀i = 1, . . . , p,
Gi(x k)≥ −εk, γk

i ≥ −εk, |γk
i Gi(x k)| ≤ εk ∀i = 1, . . . , q,
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where ΦKS
i (x

k; tk) is defined as before with the gradient

∇ΦKS
i (x

k; tk)=

¨

(Hi(x k)− tk)∇Gi(x k) + (Gi(x k)− tk)∇Hi(x k) if Gi(x k) +Hi(x k)≥ 2tk,

−(Gi(x k)− tk)∇Gi(x k)− (Hi(x k)− tk)∇Hi(x k) else.

Hence, the limit x∗ is obviously feasible for the MPEC (1.1). We define the multipliers
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Then we have
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We claim that the multipliers (λk,µk, γ̃k, ν̃k) are bounded. If the sequence were unbounded, we could
assume without loss of generality convergence of the sequence

(λk,µk, γ̃k, ν̃k)
‖(λk,µk, γ̃k, ν̃k‖

→ (λ̄, µ̄, γ̄, ν̄) 6= 0.

Then the εk-stationarity of x k yields

m
∑

i=1

λ̄i∇gi(x
∗) +

p
∑

i=1

µ̄i∇hi(x
∗)−

q
∑

i=1

γ̄i∇Gi(x
∗)−

q
∑

i=1

ν̄i∇Hi(x
∗) = 0.

Additionally, the εk-stationarity yields λ̄i ≥ 0 for all i = 1, . . . , m, and λ̄i > 0 implies gi(x∗) = 0, hence
supp(λ̄) ⊆ Ig(x∗).

Now consider an i ∈ I+0(x∗). This implies Gi(x k) + Hi(x k) ≥ 2tk for all k sufficiently large and thus
γ̃k

i = γ
k
i −δ

k
i (Hi(x k)− tk). The εk-stationarity yields γk

i Gi(x k)→ 0, hence γk
i → 0, and

δk
i Φ

KS
i (x

k; tk) = δ
k
i (Hi(x

k)− tk)(Gi(x
k)− tk)→ 0,
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thus δk
i (Hi(x k)− tk)→ 0. Consequently, we have γ̄i = 0. This shows that supp(γ̄) ⊆ I00(x∗) ∪ I0+(x∗).

By a symmetric argument, we obtain supp(ν̄) ⊆ I00(x∗)∪ I+0(x∗). Thus, the equation above reduces to

∑

i∈Ig

λ̄i∇gi(x
∗) +

p
∑

i=1

µ̄i∇hi(x
∗)−

∑

i∈I00∪I0+

γ̄i∇Gi(x
∗)−

∑

i∈I00∪I+0

ν̄i∇Hi(x
∗) = 0

with λ̄i ≥ 0 for all i ∈ Ig(x∗). Hence MPEC-MFCQ implies λ̄i = 0 (i ∈ Ig), µ̄i = 0 (i = 1, . . . , p), γ̄i = 0 (i ∈
I00 ∪ I0+), and ν̄i = 0 (i ∈ I00 ∪ I+0). Altogether, we get a contradiction to the fact that (λ̄, µ̄, γ̄, ν̄) 6= 0.

Hence the sequence
�

(λk,µk, γ̃k, ν̃k)
	

is bounded. Without loss of generality, we can assume that the
entire sequence

�

(λk,µk, γ̃k, ν̃k)
	

converges to a limit (λ∗,µ∗,γ∗,ν∗). The limit is then weakly stationary
since the multipliers λ∗,µ∗,γ∗,ν∗ have the same properties as λ̄, µ̄, γ̄, ν̄.

Under additional assumptions on the sequence, one can also ensure stronger stationarity properties
of the limit, see [20] for details. But the following example illustrates, that additional assumptions are
indeed necessary.

Example 3.13. Consider the two-dimensional MPEC

min−x1 − x2 s.t. 0≤ x1 ⊥ x2 ≥ 0

and sequences t ↓ 0, εt = t2. Then it is easy to verify that the points x t =
�

(1 − t)t, (1 − t)t
�T

are εt -stationary points of NLPKS(t) with the multipliers γt = 0,νt = 0,δt = 1
εt

. On the other hand
x t → (0,0)T , which is a C-stationary point of the MPEC and satisfies even MPEC-LICQ, but is not an
M-stationary point.
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4 Related Problem Classes

MPCC

related
problems

vanishing
constraints

cardinality
constraints

chance
constraints

Finally, we want to have a look at some classes opt optimization problems, which are related to MPCCs
but need special treatment nonetheless.

4.1 Mathematical Programs with Vanishing Constraints

A mathematical program with vanishing constraints (MPVC) is of the form

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

H(x)≥ 0, G(x) ◦H(x)≤ 0,

where f , g, h, G, H have the same dimensions as in the MPCC. So contrary to an MPCC and MPVC lacks
the constraint G(x) ≥ 0. The feasible set of one vanishing constraint is depicted in Figure 4.1. We see,
that in case Hi(x) > 0 we have the constraint Gi(x) ≤ 0 but in case Hi(x) = 0 the constraint on Gi
vanishes and all Gi(x) ∈ R are feasible. These constraints have applications e.g. in truss design, see for
example [1, 2].

MPVCs suffer from similar problems as MPCCs when it comes to constraint qualifications.

0 1
Gi(x)

1

Hi(x)

Figure 4.1: Illustration of the constraint Hi(x)≥ 0, Gi(x)Hi(x)≤ 0
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Lemma 4.1. Let x∗ be feasible for MPVC and Hi(x∗) = 0 for at least one index i ∈ {1, . . . , q}. Then LICQ is
violated in x∗.

If there exists an index i such that Hi(x∗) = 0 and Gi(x∗)≥ 0, then MFCQ is violated in x∗.

In points, where there exists an index i such that Hi(x∗) = 0 and Gi(x∗) = 0, even Abadie CQ may be
violated.

Unfortunately, the points, where LICQ or MFCQ fails are often of practical interest. I.e. in truss design
they correspond to potential bars, which are not realized in the final truss.

One can reformulate an MPVC as an MPCC using slack variables as follows:

min
x ,y

f (x) s.t. g(x)≤ 0, h(x) = 0,

G(x)− y ≤ 0,

0≤ H(x)⊥ y ≥ 0.

Then x∗ is a solution of the MPVC if and only if (x∗, y∗) with

y∗i

¨

= 0 if Hi(x∗)> 0,

≥max{0, Gi(x∗)} if Hi(x∗) = 0

if a solution of the corresponding MPCC.
So in theory, it is possible to handle an MPVC using MPCC theory. However, this approach has some

drawbacks: First, the slack variable y is not uniquely determined, which may cause numerical problems.
Secondly, MPVCs have slightly better theoretical problems than MPCCs, e.g. LICQ and MFCQ are not
violated in all feasible points and thus the KKT conditions have a better chance at being optimality
conditions. Thus it makes sense to use the ideas from MPCC theory but to apply them to the MPVC
structure directly.

4.2 Optimization Problems with Cardinality Constraints

Optimization problems with cardinality constraints are of the form

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

‖x‖0 ≤ κ, (4.1)

where f , g, h have the same dimensions as before, κ ∈ {1, . . . , n− 1} and

supp(x) = {i | x i 6= 0} and ‖x‖0 = | supp(x)|.

Thus, while x ∈ Rn only κ < n components of x are allowed to be nonzero at the same time. The
resulting feasible set is usually nonconvex and possibly even disconnected. And the function x 7→ ‖x‖0
is discrete-valued and thus neither convex nor continuous. Also, although the notation may lead to a
different impression, it is not a norm because it is not positively homogeneous.

One popular application of such constraints are portfolio optimization problems such as

min
x

x TQx s.t. µT x ≥ ρ,

eT x = 1,

‖x‖0 ≤ κ,

see for example [4]. Here, one is given n possible assets and tries to choose κ out of them, which
minimize the resulting risk x TQx while at the same time providing expected returns of at least ρ.
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Similar problems also appear in in compressed sensing, see e.g. [6], where they are often tackled by
replacing ‖x‖0 with the l1 norm. In the literature one can find a large number of different approaches
to handle cardinality constraints such as mixed integer reformulations, DC approaches, exponential or
convex approximations, greedy methods and heuristics, see for example [4, 14, 33, 25, 10, 11].

An alternative approach going back to [11, 5, 7] is based on a complementarity-type reformulation:

min
x ,y

f (x) s.t. g(x)≤ 0, h(x) = 0,

0≤ y ≤ e, eT y ≥ n− κ, (4.2)

x ◦ y = 0.

Here, y is an originally binary variable used to counting the zero components of x , of which there should
be at least n−κ. Due to the special structure of the constraints, it is possible to relax the binary variable
y to a continuous variable without destroying the relation between the two problems.

Lemma 4.2. (a) x∗ is feasible for (4.1) if and only if there exists y such that (x∗, y) is feasible for (4.2).

(b) x∗ is a global solution of (4.1) if and only if (x∗, y) is a global solution of (4.2) for all y , for which it
is feasible.

(c) If x∗ is a local solution of (4.1), then (x∗, y) is a local solution of (4.2) for all y , for which it is feasible.

(d) If (x∗, y) is a local solution of (4.2) with ‖x∗‖0 = κ, then x∗ is a local solution of (4.1).

If we consider a local solution (x∗, y) of (4.2) with ‖x∗‖0 < κ, it may not be a local solution of the
original problem (4.1). This is illustrated by the following example. However, in numerical test, we have
so far not encountered this case.

Example 4.3. Consider the 3-dimensional problem

min
x
‖x − (2, 1,0)T‖2

2 s.t. ‖x‖0 ≤ 1.

The global minimum is x∗ = (2, 0,0)T and the local minimum is x̂ = (0,1, 0)T . The point x̃ = (0,0, 0)T

is not a local solution of the original problem, but e.g. together with ỹ = (1,1, 0) it is a local solution of
the reformulation.

0 2
x1

1

x2

x3
(2,1, 0)T

x∗

x̂

x̃

Figure 4.2: Illustration of Example 4.3

The complementarity-type constraint

yi ≥ 0, x i yi = 0 ∀i = 1, . . . , n

is somewhere between a vanishing and a complementarity constraints. Compared to a complementarity
constraint, we are lacking the constraint x ≥ 0. However, in some applications, we know x ≥ 0 or we
can enforce this using a split x = x+ − x− with x+, x− ≥ 0. Compared to a vanishing constraint the
difference is x i yi = 0 instead of x i yi ≤ 0.
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As one might expect, direct application of standard NLP theory to the reformulated problem (4.2) is
problematic due to the fact that standard constraint qualifications are usually violated. So one might be
tempted to try to apply MPCC theory instead, especially in cases, where one has the additional constraint
x ≥ 0. However, this also has its drawbacks: In all points where y is binary and eT y = n − κ (which
is the case if ‖x‖0 = κ, MPCD-LICQ and MPCC-MFCQ are violated due to the gradients with respect to
y being positively linearly dependent. Nonetheless, the reformulation has better theoretical properties
than an arbitrary MPCC.

To see this, let us introduce the index set

I0(x) := {i = 1, . . . , n | x i = 0}

and define two optimality conditions.

Definition 4.4. A feasible point (x∗, y∗) of the reformulation (4.2) is called

• M-stationary, if there are multipliers λ,µ,γ with

∇ f (x∗) +
∑

i∈Ig

λi∇gi(x
∗) +

p
∑

i=1

µi∇hi(x
∗) +

∑

i∈I0

γiei = 0

λi ≥ 0 ∀i ∈ Ig(x
∗)

• S-stationary, if additionally

γi = 0 for all i ∈ I0(x
∗) : y∗i = 0.

The terminology is based on MPCC theory, i.e. S-stationarity is equivalent to a KKT point of the refor-
mulation and M-stationarity is based on the limiting normal cone. One can also try to define analogues
to C- and weak stationarity, but they coincide with M-stationarity here.

M-stationarity has the nice property that it independent from y and corresponds to the KKT conditions
of the tightened problem

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0, x i = 0 ∀i ∈ I0(x
∗).

This motivates the definition of tailored constraint qualifications as follows:

Definition 4.5. Let x∗ be feasible for (4.1). Then CC-LICQ (CC-MFCQ, CC-CRCQ, CC-CPLD) holds there if
LICQ (MFCQ; CRCQ, CPLD) for

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0, x i = 0 ∀i ∈ I0(x
∗).

holds at x∗.

On can also define CC-analogues of Abadie and Guignard CQ similarly to the MPCC case. And contrary
to MPCCs one can prove the following result:

Theorem 4.6. Let (x∗, y∗) be a local minimum of the reformulation (4.2) and any CC constraint qualifica-
tion such as CC-LICQ or CC-Guignard CQ hold there. Then (x∗, y∗) is S-stationary.

For MPCCs we have seen that S-stationarity is a necessary optimality condition only under MPCC-LICQ
but may already fail under MPCC-MFCQ.

To solve the continuous reformulation, one can employ similar relaxation algorithms as for MPCCs.
And also here, one obtains better results.
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Theorem 4.7. Let (tk) ↓ 0 and (x k, yk) be KKT points of the Scholtes-type relaxed problems

min
x ,y

f (x) s.t. g(x)≤ 0, h(x) = 0,

0≤ y ≤ e, eT y ≥ n− κ,

−tke ≤ x ◦ y ≤ tke.

If (x k, yk)→ (x∗, y∗) and CC-MFCQ holds there, then (x∗, y∗) is an S-stationary point.

For MPCCs we can in general only guarantee C-stationarity of the limit, which here would correspond
to an M-stationary point.

4.3 Optimization Problems with Chance Constraints

Another class of problems, which can be reformulated using a complementarity-type constraint, are
optimization problems with chance constraints, see [3]. These are of the form

min
x

f (x) s.t. g(x)≤ 0, h(x) = 0,

P(G(x ,ξ)≤ 0)≥ 1− ε,

where ε ∈ (0,1) is a given parameter and ξ is a random vector with finitely many possible realization
ξ1 . . . ,ξN and known probabilities p1, . . . , pN . Then the problem can be rewritten equivalently as

min
x ,y

s.t. g(x)≤ 0, h(x) = 0,

y ∈ {0,1}N ,

pT y ≥ 1− ε,
yiG(x ,ξi)≤ 0.

If we again relax the binary variable y , we end up with the problem

min
x ,y

s.t. g(x)≤ 0, h(x) = 0,

0≤ y ≤ e,

pT y ≥ 1− ε,
yiG(x ,ξi)≤ 0 ∀i = 1, . . . , N ,

where one can show that feasible points still are equivalent to feasible points of the original problem.
Obviously, the reformulated problem is very similar to the reformulation of the cardinality constrained
problem. The differences are that the sum over yi is now weighted by the probabilities pi and that the
constraint yiG(x ,ξi)≤ 0 is more of a vanishing type.

For these problems one can obtain a similar optimality as for the reformulation of cardinality con-
strained problem.
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