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These are lecture notes of my talks given for the Winter School “Modern Methods in
Nonsmooth Optimization” that was held from February 26 to March 02, 2018 in Wiirzburg.
They consist of a concise summary of the material, presented in the talks and the slides
used there. Come supplementary information is also given.

1 Local Newton Methods
Consider a nonlinear, “differentiable” mapping
F:Z =Y

for which we try to find a root: z: F(z) =0.
One popular way is Newton’s method:

F’(zk)ézk + F(Zk) =0
Zp+1 = 2k + 02p

Newton’s method is only locally convergent, so we have to globalize it:
e damping

e path-following

Affine covariance

Let T : Y — Z be a linear isomorphism. Then F(z) =0« TF(z) =0, (TF) (z) = TF'(z)
and

F’(zk)ézk + F(Zk) =0« TF/(Zk)(SZk + TF(Zk) =0

Thus, roots and Newton corrections are not changed by a linear transformation of the image
space.

Even more Let T, : Y — Z, be a family of linear isomorphisms onto a family of linear
spaces, then the same holds true: we could transform the image space in each Newton step
without changing the Newton correction.

Thus, questions of convergence of Newton’s method are completely independent of quan-
tities that live in the image space (use e.g. T = AId as rescalings).

In problems that involving differential equations the norms in the domain space are
readily computed, and it is easy to implement problem adjusted norms (which is often
a good idea). In contrast, norms in the image space are usually dual norms, which are
computationally inaccessible, and can in most cases only be approximated.
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Local convergence
In order to characterize the deviation from linearity, we define an affine covariant theoretical

factor
_F )T () (" — 2) — (F(2") — F(2)))llz

Iz* = 2llz

0.,(2):

for z # z*.
Obviously (for analysis only):

[(F'(2)(z" = 2) = (F(z") = F())ly
2% = 2|z

0..(2) < IF'(2) vz

This looks like an affine covariant version of the usual finite differences used in the
definition of Fréchet differentiability of F' at z. Here, however, we will consider z* fixed,
and the limit z — z*.

Theorem 1.1. Let R be a linear space, Z a normed space, D C Z and F : D — R. Assume
there is z, € D with F(z,) = 0. For given z € D assume that there exists an invertible
linear mapping F'(2)(-) : Z — R such that ©,,(z) is well defined. Assume that an inexact
Newton step results in

2z =2 —F'(2)7'F(2) +e,

where the relative error v(z) := |le|| / ||z — z«|| is bounded by

Y(2) +0..(2) <B < 1. (1)
Then

Iz = 2l < Bz = 2]l (2)

Proof. We compute for one inexact Newton step:

2 = 2l = |2 = F/(2) ' F(2) + e — 2|
<P/ F @) — 2) — (F(2) = ]|+ el

Inserting the definition of ©,, (z) and assumption (1) we obtain
24 = 2l < (B(2) +7(2)) 1z — 2]l < Bllz — 2|
O

e Fis called (affine covariantly) Newton differentiable or semi-smooth with respect to
F' if ©,, (z) — 0 as z, — z. For the case of exact Newton steps (7(z) = 0) we then
obtain the well known result of local superlinear convergence.

e The choice of F’ is not unique. It is an algorithmic, but not an analytic quantity.

On the basis of this theorem, we denote ©,_(z) as theoretical contraction factor.

Close relative: implicit function theorem

We know F'(zp) = 0, do we find a root for F(zy) —p = 07?

e Difference: used to show existence of local solutions
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e Needs strict differentiability:

|5 (z0)~H (F"(20) (2 — ) = (F(2) = F()))llz
Iz = yllz

)

0 (z,y) ==

and lim, ,_,,, @E;(Z, y) =0.
e Then the simplified Newton method:
F'(20)021 + (F(2x) —p) = 0.

converges (for small enough p, of course) to a solution of the perturbed equation.

2 Semi-smoothness of superposition operators

Consider the following nonlinear function:
g:RIXxQ R

We interpret the mapping
u = g(u,w),

which maps d-vectors to real numbers, as non-linear mapping G : L,(2)? — L4(9), which
maps (vector valued) functions to real valued functions, via the relation:

Such a mapping is called superposition operator.

We assume that G maps measurable functions to measurable functions. A sufficient
condition for that property is that ¢ is a Caratheodory function, i.e., continuous in u for
fixed w and measurable in w for fixed u. However, also pointwise limits and suprema of
Caratheodory functions yield superposition operators that retain measurablility.

The following lemma is a slight refinement of a classical result of Krasnoselsky:

Theorem 2.1 (Continuity). Let Q be a measurable subset of R, and g : R" x Q — R™ such
that the corresponding superposition operator G maps L,(Q) into Ls(2) for 1 < p,s < oo.

Let u, € L,(2) be given. If g is continuous with respect to u at (us(w),w) for almost
all w € Q, then G is continuous at u, in the norm topology.

Proof. To show continuity of G at u, for s < co we consider an arbitrary sequence |u,, —
u4||z, — 0. By picking a suitable subsequence, we may assume w.l.o.g. that u,(w) — u.(w)
pointwise almost everywhere. Define the function

’LU(’LL, W) = |g(u7w) - g(u* (w)7 w)‘s

and denote by W the corresponding superposition operator. Inserting the sequence u,,, we
conclude that W(u,) — 0 pointwise a.e. because g(u,w) is continuous in u at (u.(w),w)
a.e..

Next we will show W (u,) — 0 in L1 () via the convergence theorem of Lebesgue. For
this we have to construct a function w € L;(£2) that dominates the sequence W(uy,). If
we assume for simplicity that |g(u,w)| < M is bounded, and || < oo, then w := (2M)*
is such a domination function (otherwise, there is a more difficult construction possible).
Hence, we obtain W (u,) — 0 in L1(2) and thus G(u,) — G(u.) in Ls(€2). Because u,, was
arbitrary, we conclude continuity of the operator G : L,(Q) — Ls(f2) at u,. O
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e For p < s = 0o, there is no continuity (except, when g is constant).
e For p = s = 0o one needs uniform continuity of g:
[t = v]loe = 0= llg(u) = g(v)]loc —= 0.
Semi-smoothness of the max function

Consider the max-function:

m:R— R

m(x) = max(x,0)

and define its “derivative” by

0 : <0
m/(z) :={ arbitrary : z=0 (3)
1 : z>0.

Proposition 2.2. For the max-function we have

lim O,,(x)=0

T—xT*

Proof. Tf . # 0, then m is differentiable at x, with locally constant derivative m’(x.), so
the remainder term vanishes close to x,.
If . = 0, we have two cases

x<0: m'(z)(z—z)— (m(x) —m(z.)=0-(0-0)=0
x>0: m'(z)(z—z.)— (m(x) —m(z.) = (z—0)— (z—0)=0.

Semi-smoothness of superposition operators

Let g,¢' : R = R, z, € L, be given. Define for z € R

| (@) (=2 (@)= (9(2) =g (s (@))]
Vo (2, 0) = { |z~ ()] Do #F T (w)

0 : z=u.w)
If ~,, is continuous at x,, < ©, (x) — 0, then also the superposition operator
Iy, : L, — L,

Then for 1/s + 1/p = 1/q we conclude by the Holder-inequality:

IG"(2) (2 — 2.) = (G(z) = G(@)) L, = ITe. @)z — zilllL, < [T, (@)llz, |2 — 2.2,
————
—0
Hence, loss of integrability, “norm-gap”:
G’ —x.) — (G(z) — G(z.
16" (@) (z — z.) — (G(2) - Glz))llz, _, ‘<o

l = .|z,

To bridge this norm gap, additional structure is needed, coming, e.g., from a partial differ-
ential equation.
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3 Application to problems in function space

Using function space methods for pure superposition operator problems is, of course, a bad
idea. These problems can be solved pointwise. However, if there is a coupling, e.g., by a
PDE, function space methods should be used.

A semi-linear equation with a semi-smooth nonlinearity

As a simple example, we consider the following problem:
F(z)v:= / Vz - Vo + max(0,r)vdw Yo € Hy ()
Q

Then the remainder-term is a superpositon operator:
[F'(z)(2 = 2.) = (F(2) = F(2.)](w) = [M'(z)(z — z.) — (M(2) - M(2.))](w)
The differential operator cancels out, but inverse is smoothing;:
(F'(z)éx)v = /QV6$ - Vo + M'(z)dzv dw
is an invertible mapping:

F'(z): Hy(Q) — Hy ()"
By the Sobolev embedding:

E:Hg(Q) — Ly(Q),p>2

we get:
EF' (2)'E* : Ly(Q) ~ Ly()* — Ly(Q),q <2 < p.

We observe a smoothing property of F’(x)~! which helps to brigde the norm gap:

1F" () 7HF (@) (2 = @) = (F(2) = Fz)]llz,

1F" (@) 7 M (2) (@ — @) — (M (2) = M(@.))][|L,

1F" (@) "Ml 2y, M (2) (@ = ) = (M (2) = M (2))]l|2,
= [IF(

IA

2) e, z,0lllr — 24|z,

Control constrained optimal control

Consider the following abstract problem:
1 9 o
min o ||y = yallz, + 5 llulz, st. Ay —Bu=0, u=0.

The corresponding KKT-conditions can be written as follows:

0=J(y) +Ap
0O=oau+ A+ B*p
0= Ay — Bu
u>0,A<0,A-u=0
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Elimination of A yields au = max(B*p,0), which can be inserted into the state equation,
yielding the control reduced KKT-conditions:

_ J'(y) + A"p _
F(2) = ( Ay — Bmax(a~'B*p,0) ) — 0,

where F' : Z — Z*. (Y x P — Y* x P*). This system can be solved by semi-smooth
Newton methods.
Let w := B*p, m(w) := max(a~'w,0), thus

o w<0
a "t o w>0

Derivative:

Here J"(y) = Id.
As before, we will use the following strategy:

(i) Choice of appropriate framework. Here Z =Y x P = H! x H*
(ii) Continuous invertibility of F” with uniform estimate
(iii) Analysis of remainder term as superposition operator

Lemma 3.1. Assume that m : U — R is bounded and non-negative, A : H' — (H')*
continuously invertible, J"(y) bounded and positive semi-definite. Then the system

J"(y) A by \ _(m
A —BmDB* op )\ ro
has a unique solution. Moreover for r1 € Lo, the estimate
[0yl 2, + N0l < Clrall - + lIr2llzy-)

holds, where C does not depend on m, but only on ||m||s.

Proof. Consider the optimal control problem:
1 1
min §J”(y)(6y, 8y) — (r1, 8y) + §||5u|\(21 s.t. Ady — By/mdéu —ry =0,

where (r1,72) € Z*. By standard argumentation, this problem has a solution (dy, du) €
H' x U, which is even unique by strict convexity (because of the du-Term).
Further, by uniform convexity, we obtain:
lully < c(lirillany- + lIr2ll -

KKT-conditions read:

J"(y)oy + A*op =1

du 4+ /mB*ép =0
Aby + By/mdu =19
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The corresponding control reduced KKT conditions (our system) also has a unique solution

(dy, dp).
The state equation implies:

16yl < e(llvmlloo)(loulle + lIr2l )

and by the adjoint equation we get:

16plla < (10yll L. + 72l 1))
Inserting into each other, we obtain the desired estimate. O
Remark: with regularity theory, this lemma can be refined.

Theorem 3.2. Let U = Ly(Q), (e.g. @ =Q,Q =T...) and assume that B* : H* — L, is
continuous for some q > 2. Then Newton’s method converges locally superlinearly towards
the solution of our optimal control problem, where

121l == llyllz. + 1 BpllL,
Proof. Let g > 2 as in our assumption. We compute

F'(2)(2 = 2) = (F(2) = F(z)) = B(m'(w)(w — ws) = (m(w) — m(w.)))

_ g W)(w—w,) — (m(w) —m(w,))

w—w
pr— ( <)

Yy (W)

We note that v, (w) < a~!, and thus 'y« : L, — L, for each s < co. By the above example
limy s, Yw, (w) = 0. Thus, by Lemma 2.1 we obtain ||y, (w)||z, — 0 for ||w—w.|/z, — 0.
For 1/2 =1/s+ 1/q we use the Holder inequality to get

IF'(2) (2 = 2:) = (F(2) = F(z:))l 2 1)+ < 1Bl po— 1y ITw, (w) L. lw — wi -
Now let 6z = F/(2) Y (F'(2)(z — 2+) — (F(2) — F(2.))). By Lemma 3.1
162]] = C(l[oyl L. + [1B*0pl|L,)
< oyl + 1B L, [16pll )
< ClB|lLy— )y ITw, (W)L llw = willr,. < Cllw, (w)l|z. 1B (p = p)llz,-
thus ©,-(2) = 0, if B*(p — p«) = 0in L, for s < oc.
Hence, Newton’s method converges locally superlinearly. O

Related approaches

Semi-smooth Newton methods were applied to optimal control problems in various other
formulations [2, 6, 3]. Alternatively one can also eliminate the state and the adjoint state to
end up with a problem in u that contains solution operators S = A~!'B and their adjoints,
together with the max-superposition operator. Here the smoothing property of S helps to
bridge the norm-gap. Also, a complementarity function approach can be used to tackle
the full KKT-system. Then a smoothing step has to be employed to bridge the norm gap
[6], see also the pre-semi-smooth paper [8]. The approach presented here follows [5], where
also convergence rates are discussed and additional details can be found. A comprehensive
source on semi-smooth Newton in function space are the textbooks [7, 4].
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4 Detection of local convergence

A-priori theory yields confidence in algorithms, but how to implement?
Main issues:

e detection of local convergence
e globalization

Need computational quantities, close to theoretical quantities. The ideas presented here
are based on the concept of affine covariant Newton methods [1].
To assess local convergence of Newton’s method we may use a one-parameter model for

O:
[w]

[©:1(y) = S llz = ylz,

where [w] has to be estimated.
Idea: estimate O(z, z.) by O(z, 24 ):

[F"(2) N (F' () (24 — 2) = (F(24) = F(2)))llz
24 — 2|z '

0., (z) =

If ©., (2) < 1 fast convergence, if O, (z) > 1 divergence

Computation:
— F'(2)7'F 0z
o. (5 L= FCle ol
16|z 12|z
where 0z = F'(2) 1 F(zy) is a simplified Newton correction.
This also yields an estimate for [w]:

20, (2)

[w] = ——————.
Iz — 2411z

Under the assumption that ©,,(z) < 2w||z — z.||z we obtain an estimate for the radius of

contraction:

20
rei=—:|z— 2z <re=0,,(2) <O.
w

2
w

@

Thus, we get a computational estimate [rg] :=
Moreover, we have the error bound:

24 = 2]l = ©2, (2) |2 — 2] < ©:.(

2 =z | + llz4 = 2,

thus

0..(2)
_ < AN,
||Z+ Z*H = 1—63*(2)“2: Z-‘rHa
=0 (2)

which can be estimated again via [©,, ()]

Difficulties with semi-smooth problems

Proposition 4.1. Assume that F'(Z)"'F is not Fréchet differentiable at 2. Then there
there exists ©q, and a sequence z — Z, such that for the radius of contraction r(’f)o for the
perturbed problems F(z) — F(z) = 0 we have

lim 7§ = 0.
k— o0 ©o



Detection of local convergence 9

Proof. If F is not Fréchet differentiable at z, then for each choice of F~1(z) there is a a
constant ¢ and a sequence z; — Z such that

[ E~ (20)(F" (20) (21 — 2) — (F(21) — F(2)))|| = ellzn — 2] - (4)
This inequality, reinterpreted in terms of Newton contraction of F' at zy, directly yields the
result. O

Thus, if Fréchet differentiability fails, the radius of convergence of Newton methods for
semi-smooth problems may break down under perturbations. This implies difficulties in
many analytic and algorithmic concepts that rely on stability of Newton’s method:

e implicit function theorems
e semi-smooth Newton path-following
e detection of local convergence

Proposition 4.2. Assume that the following strong semi-smoothness assumption holds:

PO P @)E - ) - (Fe) - Fe)))|

Then ©](-.)
i @(z_i) =1 (6)

Proof. For a comparison of O(z_) and [©](z_) we introduce the auxiliary term

5 17 = 2|l
O(z) i= 7—
Iz = 2|l
and use the inverse triangle inequality |||a|| — [|b]|| < ||a £ b]| to compute
[z = 2ull = Mz = ZI[| <[z = =],
[z = 2ull = llz— = 2l <z = =],

which yields

N

2= 2l (1= B(=0)) < [l = 2] < 2 = 2]l (1 + B(=),
o = 2l (1= O(=0)) < flo = 2I| < [l — 2| (L + O(=_)).

Combination of these inequalities yields the estimate

1-8(:0) _ Jz=2lllz- — =l [©]-) _ 1+8(=)
170G =2 llz—zl  ©() ~1-8()

If lim, . ©(z_) =0 and lim,__,, ©(z_) = 0, then (6) holds. The first assumption in
this statement holds, if F' is semi-smooth at z,. For the second assumption, we compute

8oy e Bzl _ [l =2) = PGP - P
Iz = 2|l Iz = 2|l
thus, lim, _,,, ©(z_) = 0 is implied by (5). O

Such a strong semi-smoothness assumptions holds, if y # ¢ almost everywhere in €.
This is a kind of strict complementarity assumption.
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5 Globalization by damping

For bad initial guesses, Newton’s method may diverge. Idea: for an iterate zy solve the
problem: find z(\) € Z, such that

F(z(A\) —(1=MX)F(2)=0 forsome0< <1,

This defines the Newton path z(\), with z(0) = z¢ and z(1) = z, (if it exists) is a zero of
F. Newton step for this equation at z:

0= F'(20)0zx + F(2z0) — (1 = \)F(20) = F'(20)62x + AF(20)
aka damped Newton correction:
82y = Moz = —AF'(20) "1 F ()
Choose A such that the Newton’s method for z(\) converges locally, i.e.
©.n(20) <1
The simplified Newton step for that problem reads, setting the trial iterate z; := zg + Aoz
F'(20)02x + F(z¢) — (1 — A\)F(z20) = 0.

Try to control A, such that © ~ 1/2, but accept if © < 1.
If © > 1, then A has to be reduced.
Estimation of ©:

17" (20)~* (F" (20)Ad2 — (F'(21) — F(20))]

©.n)(20) ~ ©:,(20) =

[ Aozl
N
[Adz||
Model for ©: u
B]:(2) = 1|z = 2]l
If [©] is too large, choose Ay such that:
1 wlA
3 = [Ola (20 + A102) = HT+||5Z||Z
where )
o] = 20, (2) _ 205 (2) _ 2]|0z]]

llze =zl MGz A0z

Algorithm 5.1. (Damped Newton)
Initial guesses: z, [w] (or A)
Parameters: Agqq, TOL

do
solve F'(2)dz+ F(z) =0
do
compute A = min(1,1/(]|6z||[w]))
if A < >\fail

terminate: “Newton’s method failed”
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solve F'(2)0z + F(z + Xdz) =0
_ 182=(1=X\)=||
compute [w] = S PV E LR
compute O(z, z + Adz) = [w]||Adz]|
while O(z,z + Xdéz) > 1
z=2z4+ Aoz
if A\=1and ©(z,2+0z) <1/4 and ||dz|]| < TOL
terminate: “Desired Accuracy reached”, zoyt = 2+ 02+ 02
while false
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Solve the operator equation: T(x)=0

T = — T (2) " T ()

- xy=x-T () 'T(2)

v, — 2y = (@) (T(2) - T(2,)) — (x — )

Sufficient for local superlinear convergence:

o — 2| NT"(@)"H(T(2) — T(2.) — (@ — 2]
lze — | lze — |

— 0 for T — Ty

Wirzburg, 2018
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T @) T @) = T() = T (@) (o — ) |

7T s — |

=0

Remarks:

T'(x) is not uniquely determined
T'(x) may, but need not be a classical derivative
follows from well known semi-smoothness and regularity assumptions

computable estimate is available

|17 (2) ' [T(z) = T(@y) = T'(@) (@ — 2 )] _ Jloy — T4 ]

||96'+ — $|| B ||=”13 — -T+||

Ty =aq —T'(2)7 ' T(xy)

Wirzburg, 2018
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Example from Analysis I:

1 @ zeR\Q
f(x):{() . ze€eQ

Definition of derivative:

o | 1/ 0 xeR\Q
f(a:‘)—{ 0 : z€Q@Q

Semi-smoothness at * = 0 :
f(z) = f(0) = f'(x)x = f(z) — (f(x)/z)z =0

Semi-smoothness is not an analytic, but an algorithmic concept

Wirzburg, 2018
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T(x):= Lx + F(x)

L linear differential operator
F:L,(Q) — Ly(Q) superposition operator

v— F(z): (F(x))(t) := f(t,z(t)) a.e. eg. [f(t,z):=max(0,x)
then

T(x) = T(x,) = T'() (7 — 2s) = F(x) — F(2:) = F'(2) (2 — 24)
Consider

T @) F@) - Fe,) = Fi@) = 2)])

e, . —al

Wirzburg, 2018
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1 Qo
min o {|y — yall3 + §|IU||§ Ay — Bu=0

u>0
y—ys+Ap=0

y—ys+Ap=0

Ay—Bu=0 (= .
Ay — a”"Bmax(B*p,0) =0

au — max(B*p,0) =0

/

[ — ( ﬁ*;? ) F(z) = ( _a-! Byn:aic(lB*p, 0) )

Wirzburg, 2018
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F(x)— F(y) — F'(z)(x — y)

|F(2) - F(y) - F'(@)(x — y)]l1, = H (@ —y)

x—y L
Holder || F'(z) — F(y) — F'(z)(z — y)
_ S | _ Hx o yHLp 7"_1 —|—p_1 — q_l
inequality L —Y L.
It G, : L,(2) — L,.() I
fx@)=fty@)=ftz@) (@) —y(t) .
G, (z)(t) == = (O30 : 2(b) = ()
0 poa(t) = y()
is continuous at y, then
. NF(@) - F(y) = F'(2)( —y))le,
lim =0
Ty ly — x|,

Wirzburg, 2018
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Semi-Smoothness of outer function f

Hoélder Inequality rt+pt=q"
Local Continuity Result r < 00
Semi-Smoothness of superposition operator F': L, — L, q<p
Remarks:

complete analogy to Fréchet differentiability
no global Lipschitz condition necessary (growth conditions instead)
necessity of 17 < o0 explains the well known norm-gap

T =P =q = X not compatible with semi-smoothness

Wirzburg, 2018
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|F(z) — F(z.) — F'(z)(r — z.)]||z,

lim =0 || T'(2) Y,o, <M
T—T % HQZ* — Q?HLP ! P
T'(z) = Lz + F'(x)
T (@) T (2) = T(2w) — T' (@) (2 — 20)] |,
lim =0
T—> T« ||£IZ'* — ZL‘”Lp

Local superlinear convergence of Newton's method

Wirzburg, 2018
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Order of semi-smoothness w BAYREUTH

Same idea:

IF(@) - F5) = Fa)(e = s, = | WP = el
Holder || F(x) — F(y) — F'(z)(x — y) la ) ) 1
inequali1S H (z —y)° L, I y“Lp roTap =g

It Gy : Lp(Q) = L (Q)
{ FEa@)=fEy)=f EaE)@O=y®) . pe) £ (1)

@(6)=y(®)°
0 - 2(t) = y(@)

is bounded near ¥ , then

|F(z) = F(y) = F'(z)(z = y)lllz, = Oly — =l|Z,)

Gy(x)(t) :=

Wirzburg, 2018
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Strict complementarity w BAYREUTH

f(t,x) := max(0, x)

{teQ:fy(t)] <ejf <Ce?

max(0,x) —max(0,y) —vy (z)(xz—y)
Gy(x) = { (z—y)> L7y
0 T =yY
sgnT = sgny Gy(z) =0
Y| Yl o
SgNT # sgny Gy(z)] < <yl

e —yle (= + 1y~ ~

{t € Q:|Gy(z)(t)] > '} < Ce”

Wirzburg, 2018



. . . UNIVERSITAT
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Syle) :=[{t € Q: [f()] > e}

Wirzburg, 2018



Distribution function w BAYREUTH
Sple) =t e Q:fo(t)| >ep| =t € Q:|u@)]" > e} = Spr(e”)

/|v )| dt = /OOO]SU(e)de

With strict complementarity we have the estimate:

Ht e |Gy(x)(t)| > 81_a}‘ < (e’ <— 8|Gy(x)|(€1_a) < Ce7

1G, @)L = /[ S (©)de

— C/[ ]Sle(x)lr(5(1—04)7“)8(1—04)7’—1 de
0,00

_ C/ S|Gy(a:)|(51_a)€(l_a)r_1 de < C/ 8(1—04)7’—14—7 de + C
[0,00] [1€2],00]

Wirzburg, 2018
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Orders of convergence w BAYREUTH

Lemma;

{t € Q:|Gy(z)(t)] > '} < Ce

= Gy(z) € L.(Q) for such o
l<a<l4+yrt

Conclusion:
|F(z) = F(y) = F'(z)(z = y)lle, < Gy@), lle—wllz, 7+ +ap™ =¢7*

Hence for the max-function:
1T () Mpyor, <M

, Local superlinear convergence of
teQ: |yt < < (C¢?
it y(t)] <e}f < Ce = Newton's method of order &

1 —1
l<a< * 74 J

1+ ~p—1

Wirzburg, 2018



What about globalization? P SiyrsiTm

Assume that 7' is not Frechet differentiable at x.:

I(T(zn) — T(7)) = T"(T)(2n — T)|
lzn — |

410 > 0,z,, — ¥ : > 0O

Wirzburg, 2018



What about globalization? w BAYREUTH

Assume that 7' is not Frechet differentiable at x.:

I(T(zn) — T(7)) = T"(T)(2n — T)|
lzn — 2|

> 0

10 > 0,2, — T :

Consider the set of good semi-smooth approximation:

Me(x) :={§ € X : |T(x) = T(&) - T"(&)(z = Il < Ollz —&|1}

Then = & Mg(x,)

If © is sufficiently large, our radius of Newton contraction towards z,, can be arbitrarily small

Problem: non-differentiable points are ubiquituous in semi-smooth problems
Consequence: homotopy methods difficult to analyse

Wirzburg, 2018
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Using a merit function w BAYREUTH

Classical merit function on a Hilbert space:

Global convergence theory demands uniform continuity of ¢ () :
¢'(x)ox = (I"(x)éz, T (x))

Problem with semi-smoothness: 7" is not continuous

Remedy 1 (M. Ulbrich): use semi-smooth operator, such that

T(x)#0 = T’ is continuous at
Candidate: Fischer-Burmeister function: f(z,y) =z +y — /22 + 9?2
Remedy 2 (Kunisch et. al.): use techniques from non-smooth optimization
Remedy 3 (Graser): for control constrained optimal control, reformulation in adjoint state

Wirzburg, 2018
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Objective with semi-smooth derivative w BAYREUTH

Unconstrained minimization problem:
min f(x)

Semi-smooth and Lipschitz continuous derivative:

@) = e - (Y@ e )l

T T lz = 2|

Globalization with classical techniques (line-search, trust-region) easy,
if you use f(x)as merit-function and not || f'(z)]|”

Applications: penalized obstacle problems and state constrained problems

What about transition to fast local convergence?

Wirzburg, 2018
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Second-order semi-smoothness w BAYREUTH

Appropriate condition for transition to fast local convergence:
1
J(x +0w) = f(z) + ['(2)02 + 5 Hoysub2” + o(|[0x]])

We have a quadratic approximation that may depend on x + dx

In semi-smooth Newton we have, of course: Hyis5: = (f')'(z + o)

Theorem:
Define the local quadratic model:

1
mg(0x) = f(x) + f'(x)0x + §Hw5m2
Under second-order semi-smoothness we have for full Newton steps:

lim n(z) = lim f(w +ow) = J(z)

=1

Thus, full Newton steps become acceptable, eventually

Wirzburg, 2018



. UNIVERSITAT
Second-order semi-smoothness w BAYREUTH

Theorem:
Define the local quadratic model:

1
mz(0x) = f(z) + f'(x)dx + §Hx5a:2
Under second-order semi-smoothness we have for full Newton steps:

lim n(z) = lim flz +0z) — f(x)

=1
T =z« My (0x) — my(0)

Theorem:
Under second-order semi-smoothness we have for damped Newton steps:

1
.. S 1
i) 2 5
S |
Thus, damped Newton steps become acceptable, eventually if 77 < 5

Wirzburg, 2018
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Squared max-function:

1 9 1 : >0
f(a:)—imax(a:,O) Hx—{ 0 = 0

1
f(x 4+ dx) = f(x) + max(0,x)dx + §H3;_|_53;5562 + o(|6x]?)

w—>/max(0,w(w))2 dw s.0.8.s. on Lo, ()
Q

Classical merit function:

¢(z) = %(T(ffi)»T(l‘» Hy := (T"(z),T'(x))
¢'(x) = (T'(x)0x, T (x))
d(ry + 0x) (T (x4 + 0x)0x, T (x4 + d)dT)

1

(T(xy) + T (x4 + 6x)0x, T (xy) + T (x4 + dx)dx)

Wirzburg, 2018
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Local convergence theory

Hoélder Inequality & Continuity Result => Continuous Fréchet Differentiability
Hoélder Inequality & Local Continuity Result => Semi-Smoothness
Issues of stability of Newton contraction

Global convergence

Difficulty with classical merit function
Optimization with semi-smooth derivatives

Transition to local convergence

Second order semi-smoothness

Wirzburg, 2018



