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Abstract

The goal of this lecture series is to show examples of “synergy” effect between mathe-
matical analysis and numerics in fluid dynamics. We show how certain purely theoretical
results may shed some light on convergence of some numerical schemes. Then we undertake a
short excursion in the mathematical theory, highlighting some recent rather negative results
obtained via the method of convex integration.
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1 Analysis can be useful

Consider the following problem that appears in modeling of compressible viscous fluid:

∂t%+ divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = µ∆xu + λ∇xdivxu. (1.2)

Here % = %(t, x) is the mass density and u = u(t, x) the macroscopic (bulk) velocity of the fluid
expressed as numerical functions of the time t ∈ (0, T ) and the spatial coordinate x ∈ Ω ⊂ RN ,
N = 1, 2, 3. Equation (1.1) is the mathematical formulation of the mass conservation, while (1.2)
corresponds to Newton’s second law. Both are written in the Eulerian reference frame, where x
denotes coordinates of points in the physical domain Ω. The fluid in question is both compressible
and viscous, the symbol p = p(%) denotes the (barotropic) pressure, the expression on the right–
hand side of (1.2) represents viscous forces. The effect of external forces has been deliberately
omitted for the sake of simplicity. The system of equations (1.1), (1.2) is supplemented by the
no–slip boundary condition,

u|∂Ω = 0, (1.3)

and the initial conditions
%(0, ·) = %0, %u(0, ·) = (%u)0. (1.4)
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1.1 Numerical methods

Suppose we want to find an approximate solution to (1.1–1.4) via a numerical method. For the
sake of simplicity, we set λ = 0.

1.1.1 Weak formulation

We start with the so-called weak formulation of problem (1.1–1.4). Multiplying equation (1.1) on
a smooth test function ϕ = ϕ(x) and integrating the resulting expression yields[∫

Ω

%ϕ dx

]t2
t1

=

∫ t2

t1

∫
Ω

%u · ∇xϕ dx dt. (1.5)

Applying a similar treatment to (1.2) we obtain[∫
Ω

%u ·ϕ dx

]t2
t1

=

∫ t2

t1

∫
Ω

(
%u⊗ u : ∇xϕ + p(%)divxϕ

)
dx dt−

∫ t2

t1

∫
Ω

µ∇xu : ∇xϕ dx dt.

(1.6)

The integral identities (1.5), (1.6) should hold for any sufficiently smooth test function ϕ, ϕ,
respectively, where, in addition, ϕ should comply with the no-slip boundary condition (1.3).

1.1.2 Finite volume numerical scheme

Rather unexpectedly, it is the weak formulation (1.5), (1.6) rather than the classical one (1.1–
1.4) that is at heart of a numerical method based on finite volume approximation. To begin, we
discretize the time variable,

t0 = 0, tn+1 = tn + ∆t.

Denoting by %n, un the value of the solution at the time level tn we get∫
Ω

(
%n − %n−1

)
ϕ dx ≈ ∆t

∫
Ω

%nun · ∇xϕ dx, (1.7)

∫
Ω

(
%nun − %n−1un−1

)
·ϕ dx

≈ ∆t

∫
Ω

(
%nun ⊗ un : ∇xϕ + p(%n)divxϕ

)
dx dt−∆t

∫
Ω

µ∇xun : ∇xϕ dx.

(1.8)

To perform the space discretization, we suppose that the spatial domain Ω is a polygon that
can be written as a union of small control volumes - polygonal compact sets of a common diameter
h:

Ω ≈ Ωh = ∪K∈Kh
K.
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Typical examples of the sets K are cubes or tetrahedra; it is also assumed that if K1∩K2 is either
void, or a common face (N = 3), or a common edge (N = 2, 3), or a common vertex (N = 1, 2, 3)
for any couple K1, K2 ∈ Kh.

We look for approximate solutions %hn, uhn that are constant on each element K ∈ Kh; similarly,
the family of test functions is no longer smooth but piecewise constant. Denote Qh(Ωh) the space
of functions that are constant on each K ∈ Kh. Formally, ∇xφ for φ ∈ Qh is a distribution vector
“sitting” on the faces σ ∈ Σh, its direction coincides with the normal vector n to the face σ, its
amplitude proportional to the jump

[[φ]]σ = lim
s→0+

φ(x+ sn)− lim
s→0+

φ(x− sn).

Note carefully that
∇xϕ ≈ [[φ]]σn

is independent of the choice of the direction of the normal n.
Consequently, denoting

r =
lims→0+ r(x+ sn) + lims→0+ r(x− sn)

2

the average of r ∈ Qh on the face σ, we may rewrite the system (1.7), (1.8) as∫
Ωh

%hn − %hn−1

∆t
ϕ dx =

∑
σ∈Σh

∫
σh

%hnu
h
n · n[[σ]]σdSh, (1.9)

∫
Ωh

%hnu
h
n − %hn−1u

h
n−1

∆t
·ϕ dx =

∑
σ∈Σh

∫
σh

(
%hnu

h
n ⊗ uhn · n · [[ϕ]]σ + p(%hn)n · [[ϕ]]σ

)
dSh

− 1

h

∑
σ∈Σh

∫
σh

µ[[uhn]]σ : [[ϕ]]σdSh.

(1.10)

Equations (1.9), (1.10) are to be satisfied for any piecewise constant test functions ϕ ∈ Qh,
ϕ ∈ Q0,h(Ωh;R

N) and therefore represent a finite system of nonlinear algebraic equations.
To obtain the final finite volume numerical scheme, a “numerical viscosity” is usually added to

(1.9), (1.10), specifically,∫
Ωh

%hn − %hn−1

∆t
ϕ dx =

∑
σ∈Σh

∫
σh

(
%hnu

h
n · n[[ϕ]]σ − λh[[%

h]]σ[[ϕ]]σ

)
dSh, (1.11)

∫
Ωh

%hnun − %hn−1u
h
n−1

∆t
·ϕ dx =

∑
σ∈Σh

∫
σh

(
%hnu

h
n ⊗ uhn · n · [[ϕ]]σ + p(%hn)n · [[ϕ]]σ

)
dSh

− 1

h

∑
σ∈Σh

∫
σh

µ[[uhn]]σ : [[ϕ]]σdSh

−
∑
σ∈Σh

∫
σh

λh[[%
h
nu

h
n]]σ · [[ϕ]]σ dSh.

(1.12)
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Keeping in mind our convention concerning representation of the gradient, the extra terms added,∑
σ∈Σh

∫
σh

λh[[%
h]]σ[[ϕ]]σ

)
dSh ≈ −hdivx(λh∇x%),

∑
σ∈Σh

∫
σh

λh[[%
h
nu

h
n]]σ·[[ϕ]]σdSh ≈ −hdivx(λh∇x(%u)),

correspond indeed to artificial viscosity.
The approximate problem (1.11), (1.12) can be seen as a numerical scheme for solving the

original system (1.1–1.4).

1.2 Convergence of the approximate solutions

A fundamental question is to which extent the solutions %hn, uhn resulting form the numerical scheme
(1.11), (1.12) approximate solutions to the original problem (1.1–1.4). We claim the following result
that can be rigorously justified:

Claim:
Suppose the following:

• The initial data %0, (%u)0 are smooth %0 > 0, and (%u)0 satisfies relevant compatibility
conditions.

• The domains Ωh approximate a domain Ω, where the latter has smooth boundary.

• The sequence of family of approximate densities {%hn}h>0,n≥1, is bounded uniformly for
∆t, h→ 0.

Conclusion:

%hn → %, uhn → u in L1((0, T )× Ω),

where %, u is a smooth solution of the problem (1.1–1.4).

In the remaining part of this section, we outline the proof of Claim. We point out that the
existence of the smooth solution to the limit problem is not a priori assumed; whence the proof
of Claim shows a rather nice synthesis of purely analytical and numerical methods.

1.2.1 Step 1 - generating measure–valued solutions

The approximate scheme generates a dissipative measure–valued solution to the limit system (1.1–
1.4). Such a result has been shown in [13]. Dissipative measure valued solutions represent a rather
large class of objects that accommodates asymptotic limits of various approximate problems. The
convergence to a dissipative measure–valued solution is a relatively easy task. At the level of
numerical analysis, it requires only stability and consistency properties of the scheme. The dissi-
pative measure–valued solutions to problems in fluid mechanics will be introduced and discussed
in Section 3 below.
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1.2.2 Step 2 - weak–strong uniqueness principle

The weak–strong uniqueness principle asserts that any dissipative measure valued solution coin-
cides with the strong solution emenating from the same initial data as long as the latter solution
exists. This property for the problem (1.1–1.4) was shown in [11].

1.2.3 Step 3 - local existence of smooth solutions for the limit problem

The data %0, (%u)0 as well as the spatial domain Ω being smooth, the problem (1.1–1.4) admits a
smooth solution %, u defined on a maximal time interval (0, Tmax). This is nowadays a standard
result, the relevant references concerning (1.1–1.4) are e.g. [16], [15], [20], [19], [21].

1.2.4 Step 4 - a blow up criterion for smooth solutions

A remarkable result of Sun, Wang, and Zhang [18] asserts that the local smooth solution remains
smooth as long as the density % remains bounded. In other words,

lim sup
t→Tmax−

‖%(t, ·)‖L∞(Ω) =∞ whenever Tmax > 0.

1.2.5 Step 5 - synthesis

The approximate solution generate a dissipative measure–valued solution. The latter coincides with
the smooth solution at least on compact subintervals of [0, Tmax). Thus the approximate solutions
converge to the smooth solution on compact subintervals of [0, Tmax). As the approximate densities
are uniformly bounded and convergence takes place in the strong topology of L1, the density %
remains bounded up to Tmax. By the blow-up criterion, we get Tmax ≥ T , which yields the desired
conclusion.

2 Analysis can be awful

In this section, we review certain rather negative results concerning well–posedness of the inviscid
variant of the problem (1.1–1.4). Specifically, we consider the barotropic Euler system:

∂t%+ divx(%u) = 0,

∂t(%u) + divx(%u⊗ u) +∇xp(%) = 0.

Introducing the absolute temperature ϑ, we may even consider the physically more relevant
complete Euler system:

∂t%+ divx(%u) = 0, (2.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = 0, (2.2)
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with the total energy balance,

∂t

(
1

2
%|u|2 + %e(%, ϑ)

)
+ divx

[(
1

2
%|u|2 + %e(%, ϑ)

)
u

]
+ divx(pu) = 0, (2.3)

where e is the specific internal energy. The system can be supplemented by the impermeability
condition

u · n|∂Ω = 0 (2.4)

and the initial conditions

%(0, ·) = %0, (%u)(0, ·) = (%u)0, %e(%, ϑ)(0, ·) = (%e)0. (2.5)

The iconic example of the state equation is the Boyle-Marriot law for the pressure,

p = %ϑ, supplemented with e = cvϑ, cv > 0 a positive constant.

2.1 Entropy

The constitutive relations imposed on the pressure p = p(%, ϑ) and the internal energy e = e(%, ϑ)
are not completely arbitrary. They should comply with the Gibbs equation

ϑDs = De+ pD

(
1

%

)
. (2.6)

The new quantity s = s(%, ϑ) is the specific entropy. Thanks to (2.6), (smooth) solutions of the
Euler system (2.1–2.3) satisfy the entropy balance equation,

∂t(%s) + divx(%su) = 0. (2.7)

Unfortunately, smooth solutions to the Euler system (2.1–2.3) do not, in general, exist globally in
time for a fairly general class of initial data, see e.g. the monographs by Dafermos [6], Smoller [17].
Discontinuities may appear in a finite time no matter how smooth the initial data are. If one still
believes in physical relevance of the Euler system, a new concept of solutions must be developed,
where smoothness of solutions is relaxed. These are the so–called weak (distributional) solutions
introduced in the following section. At this moment, we just point out that for the weak solutions,
the entropy balance (2.7) is replaced by inequality,

∂t(%s) + divx(%su) ≥ 0. (2.8)

2.2 Weak solutions

The weak formulation of the Euler system (2.1–2.3) reads[∫
Ω

%ϕ(t, ·) dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt (2.9)
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for any test function ϕ ∈ C1([0, T ]× Ω);[∫
Ω

%u ·ϕ(t, ·) dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[%u · ∂tϕ + %u⊗ u : ∇xϕ + pdivxϕ] dx dt (2.10)

for any test function ϕ ∈ C1([0, T ]× Ω;RN), ϕ · n|∂Ω = 0,[∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
ϕ(t, ·) dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[(
1

2
%|u|2 + %e(%, ϑ)

)
∂tϕ+

(
1

2
%|u|2 + %e(%, ϑ) + p

)
u∇xϕ

]
dx dt

(2.11)

for any test function ϕ ∈ C1([0, T ]× Ω). It is customary to append the system (2.9–2.11) by the
weak formulation of the entropy inequality (2.8),[∫

Ω

%sϕ(t, ·) dx

]t→τ−
t=0

≥
∫ T

0

∫
Ω

[%s∂tϕ+ %su · ∇xϕ] dx (2.12)

for any ϕ ∈ C1([0, T ]× Ω), ϕ ≥ 0.
Note that (2.9–2.11) is slightly different from the weak formulation introduced in (1.5), (1.6),

however both forms are equivalent. Having time dependent test functions as in (2.9–2.11) is rather
convenient and will be used in the future.

2.3 Well posedness

It is known that the system (2.9–2.11) is not well-posed in the class of weak solutions. There
are examples of infinitely many weak solutions emanating from the same initial data, see e.g.
Dafermos [7]. There has been a common believe that imposing the entropy inequality (2.12) as an
admissibility criterion will rule out the unphysical solutions. Unfortunately, this is not the case at
least in the physically relevant multidimensional case N = 2, 3.

Let Ω ⊂ RN , N = 2, 3 be a bounded Lipschitz domain. We consider piece–wise constant initial
distribution of the density and the temperature. A function r is piecewise constant if Ω admits a
decomposition

Ω = ∪Mi=1Ki, Ki Lipschitz domains, Ki ∩Kj = ∅ for i 6= j

such that r|Ki
= ri-a constant for each i = 1, . . . ,M . We report the following result proved in [12,

Theorem 2.6].

Theorem 2.1. Let Ω ⊂ RN be a bounded Lipschitz domain. Let the initial data %0 > 0, ϑ0 > 0 be
piece-wise constant functions.

Then there exists a vector field u0 ∈ L∞(Ω;RN) such that the problem (2.9–2.12) admits
infinitely many solutions starting from %0, ϑ0, u0. In addition, the entropy balance (2.12) holds as
an equality, meaning for all test functions ϕ ∈ C1([0, T ]× Ω) (not necessarily non–negative).

The proof of this rather striking result is based on the method of convex integration, recently
adapted to problems in fluid mechanics by De Lellis and Székelyhidi et al [10], [9], [8].
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2.3.1 Convex integration for incompressible fluid flows

We show that Theorem 2.1 follows from rather innocently looking statement related to the incom-
pressible Euler system. Consider the following problem:

v(0, ·) = v0, divxv = 0, (2.13)

∂tv + divx

(
v ⊗ v − 1

N
|v|2I

)
= 0 (2.14)

supplemented with the “no–flux” boundary conditions specified below. We consider the weak
solutions of (2.13), (2.14) satisfying[∫

Ω

v ·ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[
v · ∂tϕ + v ⊗ v : ∇xϕ−

1

N
|v|2divxϕ

]
dx dt (2.15)

for any ϕ ∈ C1([0, T ]×RN ;RN), ∫ τ

0

∫
Ω

v · ∇xϕ dx dt = 0 (2.16)

for any ϕ ∈ C1([0, T ] × RN). The fact that ϕ, ϕ behave arbitrarily on ∂Ω enforces the no–flux
boundary conditions mentioned above.

Despite the fact that problem (2.15)–(2.16) is apparently overdetermined, we report the fol-
lowing result proved by De Lellis and Székelyhidi [9].

Theorem 2.2. Let N = 2, 3 and let

E =
1

2
|v|2

be the kinetic energy associated to the field v. There exists Λ0 ≥ 0 such that for any Λ ≥ Λ0, there
is v0 ∈ L∞(Ω;RN) such that the problem (2.15), (2.16) admits infinitely many solutions v in the
class

v ∈ Cweak([0, T ];L2(Ω;RN)) ∩ L∞((0, T )× Ω;RN)

such that

E =
1

2
|v|2 = Λ =

1

2
|v0|2 for any t ∈ [0, T ].

In the remaining part of this section we show how Theorem 2.1 follows from Theorem 2.2. Let

Ω = ∪i=1Ki

be the decomposition of Ω associated to the piecewise constant initial data, meaning

% = %i > 0, ϑ = ϑi > 0 on each Ki.
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Applying Theorem 2.2 on each Ki and performing a simple rescaling t ≈ %i in the time variable,
we obtain the existence of the initial data v0,i and the associated solutions vi satisfying

[∫
Ki

vi ·ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ki

[
vi · ∂tϕ +

vi ⊗ vi
%i

: ∇xϕ−
1

N

|vi|2

%i
divxϕ

]
dx dt (2.17)

for any ϕ ∈ C1([0, T ]×RN ;RN), ∫ τ

0

∫
Ki

vi · ∇xϕ dx dt = 0 (2.18)

for any ϕ ∈ C1([0, T ]×RN),
1

2

|vi|2

%i
= Λ− N

2
p(%i, ϑi) (2.19)

for some Λ > 0 that may be taken the same on all Ki. Consequently, introducing the velocity field
ui,

ui =
1

%i
vi,

we easily deduce from (2.19) the weak formulation of the continuity equation (2.9), namely[∫
Ki

%iϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ki

[%i∂tϕ+ %iui · ∇xϕ] dx dt (2.20)

for any ϕ ∈ C1([0, T ]×RN). Similarly, equation (2.17) together with relation (2.19), give rise to[∫
Ki

%iui ·ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ki

[%iui · ∂tϕ + %iui ⊗ ui : ∇xϕ + p(%i, ϑi)divxϕ− 2Λdivxϕ] dx dt

(2.21)
for any ϕ ∈ C1([0, T ]×RN ;RN).

Finally, as the total energy as well as the pressure are constant on Ki, we deduce from (2.16)
that[∫

Ki

(
1

2
%i|ui|2 + %ie(%i, ϑi)

)
ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ki

[(
1

2
%i|ui|2 + %ie(%i, ϑi)

)
∂tϕ+

(
1

2
%i|ui|2 + %ie(%i, ϑi) + p(%i, ϑi)

)
ui · ∇xϕ

]
dx dt

(2.22)

and [∫
Ki

%is(%i, ϑi)ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ki

[
%is(%i, ϑi)∂tϕ+ %is(%i, ϑi)ui · ∇xϕ

]
dx dt (2.23)
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for any ϕ ∈ C1([0, T ]×RN ;RN).
Now, relations (2.21–2.22) can be summed up over i = 1, . . . ,M to yield the desired conclusion.

Note carefully this is possible thanks to our choice of the boundary conditions. Finally, the

M∑
i=1

∫
Ki

2Λdivxϕ dx =

∫
Ω

2Λdivxϕ dx

in (2.21) drops out provided ϕ · n vanishes on the boundary ∂Ω. Thus we have shown Theorem
2.1.

2.4 Conclusion

Theorem 2.1 shows that the complete Euler system in the dimension two and higher is ill–posed in
the class of L∞ weak solutions even if the entropy inequality (2.12) is appended as an admissibility
criterion. This is in sharp contrast with the simplified monodimensional case, where the entropy
criterion is believed to pick up the (unique) physically relevant solution. This fact is related to
possible oscillations in the families of weak solutions that may develop at any time. To the present
state of the art, it is a challenging open problem if those can be ruled out by more sophisticated
but still physically relevant admissibility criteria. In what follows, we introduce a more general
class of solutions to the Euler and similar systems in fluid dynamics, where oscillatory behavior is
anticipated.

3 Analysis can be beautiful

We introduce a rather general class of objects - dissipative measure valued (DMV) solutions - that
may be associated to evolutionary equations in fluid mechanics. For the sake of simplicity, we
focus on the barotropic Euler system:

∂t%+ divx(%u) = 0, (3.1)

∂t(%u) + divx (%u⊗ u) +∇xp(%) = 0, (3.2)

u · n|∂Ω = 0. (3.3)

In addition, the energy of the system,

E =
1

2
%|u|2 + P (%), P (%) = %

∫ %

1

p(z)

z2
dz

satisfies
∂tE + divx(Eu) + divx(pu) = 0. (3.4)

11



3.1 A priori estimates or stability

A priori estimates are natural bounds imposed on the family of solutions to a given system through
the data. In the case (3.1–3.3), the date are given by the initial condition

%(0, ·) = %0, u(0, ·) = u0. (3.5)

They can deduced formally assuming all quantities in (3.1–3.3) are sufficiently smooth. A natural
counterpart of a priori bounds are stability estimates for numerical methods. It turns out that
the available a priori bounds for the system (3.1–3.3) are rather poor. Rewriting the equation of
continuity as

∂t%+ u · ∇x% = −%divxu

we deduce, integrating along characteristics, that

% ≥ 0 provided %0 ≥ 0.

Unfortunately, a stronger bound

%(τ, ·) ≥ inf
x∈Ω

%0 exp

(
−
∫ τ

0

‖divxu‖L∞(Ω)

)
seems out of reach due to the lack of estimates on divxu. Similar problem occurs even for the
“more regular” Navier–Stokes system.

Next, we may integrate (3.1) over Ω and use the boundary condition (3.3) to see that the total
mass of the fluid is a conserved quantity,

M =

∫
Ω

%(t, ·) dx =

∫
Ω

%0 dx for all t ≥ 0. (3.6)

Furthermore, we may integrate the total energy balance (3.4) to obtain∫
Ω

[
1

2
%|u|2 + P (%)

]
dx =

∫
Ω

[
1

2
%0|u0|2 + P (%0)

]
dx. (3.7)

Seeing that

P ′′(%) =
p′(%)

%
for any % > 0

we deduce that P is a (strictly) convex function of % as soon as the pressure p is a (strictly)
increasing function of %. We shall therefore suppose that

p′(%) > 0 whenever % > 0, (3.8)

in other words, compressibility of the fluid is always positive. Such a stipulation is sometimes
called hypothesis of thermodynamic stability.
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Keeping in mind the total mass conservation (3.6) we choose %,

M =

∫
Ω

% dx =

∫
Ω

% dx = |Ω|%,

tacitly assuming that Ω is a bounded domain. Consequently,∫
Ω

[
1

2
%|u|2 + P (%)

]
dx =

∫
Ω

[
1

2
%|u|2 + P (%)− P ′(%)(%− %)

]
dx

=

∫
Ω

[
1

2
%|u|2 + P (%)− P ′(%)(%− %)− P (%)

]
dx+ P (%)|Ω|,

where the rightmost integral is non–negative. This yields∫
Ω

%|u|2(t, ·) dx+

∫
Ω

|P (%)(t, ·)| dx
<∼ 1 uniformly for t ≥ 0. (3.9)

Unfortunately, the energy bound (3.9) seems to be the best one available for the Euler system
(3.1–3.3), at least if N > 1. Note that this is, in general, not enough to render the pressure p(%)
integrable and, in addition, we have basically no bounds on the velocity u due to the hypothetical
possibility of vacuum regions, where % may vanish.

To control the pressure, we make another hypothesis, namely,

|p(%)| <∼ 1 + P (%) for all % ≥ 0. (3.10)

Note that (3.10) holds for the iconic example of the isentropic EOS:

p(%) = a%γ, γ ≥ 1.

To overcome the problem with velocity, we introduce a new variable, the momentum m = %u, and
replace systematically u by m/%.

3.2 Weak formulation

With the new state variable m, we may write the weak formulation of the Euler system (3.1–3.3)
in the form [∫

Ω

%ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[%∂tϕ+ m · ∇xϕ] dx dt (3.11)

for any ϕ ∈ C1([0, T ]× Ω),[∫
Ω

m ·ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[
m · ∂tϕ +

m⊗m

%
: ∇xϕ + p(%)divxϕ

]
dx dt (3.12)

for any ϕ ∈ C1([0, T ] × RN ;RN), ϕ · n|∂Ω = 0. Finally, we append (3.11), (3.12) by the energy
inequality

−
∫ T

0

∂tψ

∫
Ω

[
1

2

|m|2

%
+ P (%)

]
(t, ·) dx dt ≤

∫
Ω

[
1

2

|m0|2

%0

+ P (%0)

]
dx (3.13)

for any ψ ∈ C1
c [0, T ), ψ ≥ 0, ψ(0) = 1.
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3.3 Weak sequential compactness

We assume that [%n,mn] is a sequence of (weak) solutions satisfying (3.11–3.13) with the initial data
[%0,n,m0,n]. Our goal is to study the limit problem for the accummulation points of {%n,mn}∞n=1

as n→∞ in suitable topologies.

3.3.1 Weak topology

Under the hypothesis (3.10), we control all terms in (3.11–3.13) at least in the L1 topology. More
precisely, seeing that

m =
√
%

m
√
%
≤ 1

2
%+

1

2

|m|2

%

we deduce from the bounds (3.6), (3.9) that

%n, mn,
mn ⊗mn

%n
, p(%n) are bounded in L∞(0, T ;L1)

uniformly for n→∞.
We pause at this stage to briefly discuss possible behaviour of sequences of functions that are

bounded only in the L1−norm. The first problem that may occur are oscillations. A typical
examples is the sequence

vn(y) = v(ny), where v is periodic on R.

Apparently, {vn}∞n=1 does not converge pointwise to any function but rather oscillates around its
integral mean. Thus the only possibility how to study convergence of {vn}∞n=1 is to consider its
integral averages, ∫

B

vn(y) dy,

where B is a Borel set. It turns out that the integral averages do converge, at least for a suitable
subsequence we do not relabel. Specifically, there is a periodic function v such that∫

B

vn(y) dy →
∫
B

v(y) dy (3.14)

for any Borel set B, or, equivalently,∫
vn(y)φ(y) dy →

∫
v(y)φ(y) dy (3.15)

for any φ ∈ C∞c (R).
Convergence in integral averages is called weak -L1 convergence. It requires equi-integrability of

the sequence and does not commute with the non–linear compositions. Specifically,

if vn → v weakly in L1 and F (vn)→ F (v) weakly in L1, then, in general, F (v) 6= F (v).
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Another type of singularity that may occur for an L1− bounded sequence is concentration. An
iconic example is

vn(y) = nvn(ny),

∫
R

|v(y)| dy <∞, v compactly supported in R.

It is easy to see that
vn(y)→ 0 whenever y 6= 0,

and ∫
R

vn(y) dy = const.

Apparently, the asymptotic limit cannot be characterized by integral averages but rather by a
measure supported at the origin y = 0.

3.4 Measure–valued solutions

Suppose there is a sequence {Un}∞n=1 of vector–valued functions defined on a domain Q ⊂ Rn and
ranging in a closed set P ⊂ Rm. In addition, suppose that∫

Q

|Un| dy
<∼ 1 uniformly in n.

Finally let F : P → R be a continuous function,∫
Q

|F (Un)| dy
<∼ 1 uniformly in n.

We can interpret F (Un) as a family of (signed) measures on the physical space Q, therefore,
at least for a suitable subsequence,

F (Un)→ F̂ (U) weakly-(*) in M(Q).

On the other hand, we can extract a subsequence such that

B(Un)→ B(U) for any B ∈ Cc(P).

Accordingly, the mapping
B 7→ B(U)(y), B ∈ Cc(P)

can be seen as a probability measure on the phase space P for a.a. y ∈ Q, see e.g. the standard
reference by Ball [1]. This is the Young measure associated to the sequence {Un}∞n=1. We denote
it by {Vy}y∈Q. It can be checked that F is integrable with respect to a.a. measures Vy and the
function

y 7→ 〈Vy;F (U)〉 is integrable in Q,

∫
Q

|〈Vy;F (U)〉| dy <∞.
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The signed measure

µC = F̂ (U)− 〈Vy;F (U)〉 dy

is called concentration defect for F . The function y → 〈Vy;F (U)〉 is the biting limit of the sequence
{F (Un)}∞n=1, cf. Ball and Murat [2].

We are ready to introduce the concept of dissipative measure–valued (DMV) solution for the
Euler system (3.1–3.3). We denote by

QT = (0, T )× Ω

the associated physical space, and by

P =
{

[%,m]
∣∣∣ % ≥ 0, m ∈ RN

}
the phase space.

Definition 3.1. A parametrized family of probability measures {Vt,x}(t,x)∈QT
is dissipative measure–

valued (DMV)-solution of the problem (3.1–3.3), with the initial conditions {V0,x}x∈Ω, if:

•
(t, x) 7→ Vt,x ∈ L∞weak(QT ;P(F)); (3.16)

• ∫ T

0

∫
Ω

[〈Vt,x; %〉 ∂tϕ+ 〈Vt,x; m〉 · ∇xϕ] dx dt = −
∫

Ω

< V0,x; % > ϕ(0, ·) dx+

∫ T

0

∫
Ω

∇xϕ·dµ1
C

(3.17)
for any ϕ ∈ C1

c ([0, T )×Ω), where µ1
C ∈M([0, T ]×Ω;RN) is a (signed) vector-valued measure;

• ∫ T

0

∫
Ω

[
〈Vt,x; m〉 · ∂tϕ +

〈
Vt,x;

m⊗m

%

〉
: ∇xϕ + 〈Vt,x; p(%)〉 divxϕ

]
dx dt

= −
∫

Ω

< V0,x; m > ·ϕ(0, ·) dx+

∫ T

0

∫
Ω

∇xϕ · dµ2
C

(3.18)

for any ϕ ∈ C1
c ([0, T )×Ω;RN), ϕ · n|∂Ω = 0, where µ2

C ∈M([0, T ]×Ω;RN×N) is a (signed)
tensor-valued measure;

• ∫
Ω

〈
Vτ,x;

1

2

|m|2

%
+ P (%)

〉
dx+D(τ) ≤

∫
Ω

〈
V0,x;

1

2

|m|2

%
+ P (%)

〉
dx (3.19)

for a.a. τ ∈ [0, T ), where D ∈ L∞(0, T ), D ≥ 0;
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• there exists a constant d > 0 such that∫ T

0

ψ

∫
Ω

d|µ1
C |+

∫ T

0

ψ

∫
Ω

d|µ2
C | ≤ d

∫ T

0

ψD dt (3.20)

for any ψ ∈ C1
c [0, T ), ψ ≥ 0.

Some comments are in order. Although we try to avoid postulating the existence of a “gener-
ating sequence”, the measures Vt,x are clearly associated to a Young measure generated by some
family of approximate solutions that may result from a numerical scheme. The measures µ1

C , µ2
C

are the corresponding concentration measures. Note that there is a priori nothing known con-
cerning the size of µ1

C , µ2
C , the only required and crucial restriction is (3.20). The quantity D is

the dissipation defect of the total energy. Accordingly, a measure–valued solution is dissipative if
(3.20) holds, specifically, if the concentration measures are controlled by the dissipation of the total
energy. It is exactly the condition (3.20) that plays a crucial role in the proof of the weak–strong
uniqueness principle discussed below.

It follows from (3.17), (3.18), and (3.20) that the quantities

t 7→
∫

Ω

〈Vt,x; %〉φ dx, φ ∈ C1(Ω), t 7→
∫

Ω

〈Vt,x; m〉 ·ϕ dx, ϕ ∈ C1(Ω;RN), ϕ · n|∂Ω = 0

are continuous, at least on compact subintervals of [0, T ). Accordingly, we may rewrite (3.17),
(3.1) in a more suitable form:[∫

Ω

< Vt,x; % > ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[〈Vt,x; %〉 ∂tϕ+ 〈Vt,x; m〉 · ∇xϕ] dx dt−
∫ τ

0

∫
Ω

∇xϕ·dµ1
C (3.21)

for any 0 ≤ τ < T , ϕ ∈ C1([0, T ]× Ω);[∫
Ω

< Vt,x; m > ·ϕ dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[
〈Vt,x; m〉 · ∂tϕ +

〈
Vt,x;

m⊗m

%

〉
: ∇xϕ + 〈Vt,x; p(%)〉 divxϕ

]
dx dt

−
∫ τ

0

∫
Ω

∇xϕ · dµ2
C

(3.22)

for any ϕ ∈ C1([0, T ]× Ω;RN), ϕ · n|∂Ω = 0.

3.5 Relative energy inequality

The relative energy functional is a crucial tool for comparing the measure–valued solutions with
calssical once. More precisely, to evaluate the momentum of the corresponding deviatoric measure.
We consider

E
(
%,m

∣∣∣%̃, m̃) =
1

2
%

∣∣∣∣m% − m̃

%̃

∣∣∣∣2 + P (%)− P ′(%̃)(%− %̃)− P (%̃).

17



As the function P is strictly convex, it is easy to check that E ≥ 0, and that % = %̃, m = m̃

whenever E
(
%,m

∣∣∣%̃, m̃) = 0, %̃ > 0. We define the relative energy for a (DMV) solution as

E
(
%,m

∣∣∣%̃, m̃) (τ)

=

∫
Ω

〈
Vτ,x;

%

2

∣∣∣∣m% − m̃(τ, x)

%̃(τ, x)

∣∣∣∣2 + P (%)− P ′(%̃(τ, x))(%− %̃(τ, x))− P (%̃(τ, x))

〉
dx, τ ≥ 0.

Note carefully that

E
(
%,m

∣∣∣%̃, m̃) (τ)

=

∫
Ω

〈
Vτ,x;

1

2

|m|2

%
+ P (%)

〉
dx−

∫
Ω

〈Vτ,x; m〉 ·
m̃(τ, x)

%̃(τ, x)
dx

+

∫
Ω

〈Vτ,x; %〉

(
1

2

∣∣∣∣m̃(τ, x)

%̃(τ, x)

∣∣∣∣2 − P ′(%̃(τ, x))

)
dx+

∫
Ω

p(%̃(τ, x)) dx.

In particular, the time evolution of all the above integrals can be expressed by means of the weak
formulation (3.17–3.19) as long as

• {Vt,x}(t,x)∈QT
is a (DMV) solution of the Euler system;

• %̃, m̃ are continuously differentiable, and %̃ is bounded below away from zero on QT ;

• m̃ · n|∂Ω = 0.

Introducing ũ = m̃
%̃

we therefore obtain:

E
(
%,m

∣∣∣%̃, m̃) (τ) +D(τ) ≤ E
(
%,m

∣∣∣%̃, m̃) (0)

+

∫ τ

0

∫
Ω

〈Vt,x; %ũ−m〉 · ∂tũ dx dt+

∫ τ

0

∫
Ω

〈
Vt,x; m⊗

(
ũ− m

%

)〉
: ∇xũ dx dt

−
∫ τ

0

∫
Ω

〈Vt,x; p(%)〉 divxũ dx dt

−
∫ τ

0

∫
Ω

[〈Vt,x; %〉 ∂tP ′(%̃) + 〈Vt,x; m〉 · ∇xP
′(%̃)− %̃∂tP ′(%̃)] dx dt

+

∫ τ

0

∫
Ω

|∇xũ| d|µ1
C |+

∫ τ

0

∫
Ω

|∇xũ| d|µ2
C |.

(3.23)

Although (3.23) might seem a bit mysterious at the first glance, it can be derived by direct
manipulation, the reader may consult [11] for details. It is worth noting that the “test” functions
%̃, ũ are quite arbitrary required only to satisfy the obvious restrictions.
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3.6 Weak strong uniqueness

Our ultimate goal is to show that a (DMV) solution to the Euler system coincides with the strong
solution emanating from the same initial data as long as the latter exists. Here “emanating from
the same initial data” means that the initial measure V0,x is given as

V0,x = δ%0(x),m0(x),

where %0, m0 are the initial data of the strong solution. With the relative energy inequality (3.23)
at hand, the plan is to plug in the strong solution %̃, m̃ = %̃ũ as test functions in (3.23).

3.6.1 Step 1 - concentration measures

As the initial data coincide, the relative energy inequality (3.23) gives rise to

E
(
%,m

∣∣∣%̃, m̃) (τ) +D(τ)

≤
∫ τ

0

∫
Ω

〈Vt,x; %ũ−m〉 · ∂tũ dx dt+

∫ τ

0

∫
Ω

〈
Vt,x; m⊗

(
ũ− m

%

)〉
: ∇xũ dx dt

−
∫ τ

0

∫
Ω

〈Vt,x; p(%)〉 divxũ dx dt

−
∫ τ

0

∫
Ω

[〈Vt,x; %〉 ∂tP ′(%̃) + 〈Vt,x; m〉 · ∇xP
′(%̃)− %̃∂tP ′(%̃)] dx dt

+

∫ τ

0

∫
Ω

|∇xũ| d|µ1
C |+

∫ τ

0

∫
Ω

|∇xũ| d|µ2
C |.

Our goal is to show that all integrals on the right–hand side of the above inequality are bounded
above (modulo a multiplication constant) by∫ τ

0

[
E
(
%,m

∣∣∣%̃, m̃) (τ) +D(τ)
]

dt

and to use the Gronwall lemma. The first observation is the the this is true for the last two
integrals containing the concentration measures as a direct consequence of (3.20). We therefore
deduce

E
(
%,m

∣∣∣%̃, m̃) (τ) +D(τ)

<∼
∫ τ

0

∫
Ω

〈Vt,x; %ũ−m〉 · ∂tũ dx dt+

∫ τ

0

∫
Ω

〈
Vt,x; m⊗

(
ũ− m

%

)〉
: ∇xũ dx dt

−
∫ τ

0

∫
Ω

〈Vt,x; p(%)〉 divxũ dx dt

−
∫ τ

0

∫
Ω

[〈Vt,x; %〉 ∂tP ′(%̃) + 〈Vt,x; m〉 · ∇xP
′(%̃)− %̃∂tP ′(%̃)] dx dt

+

∫ τ

0

[
E
(
%,m

∣∣∣%̃, m̃) (τ) +D(τ)
]

dt.
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3.6.2 Step 2 - convective term

Next, we write∫ τ

0

∫
Ω

〈
Vt,x; m⊗

(
ũ− m

%

)〉
: ∇xũ dx dt =

∫ τ

0

∫
Ω

〈
Vt,x; (m− %ũ)⊗

(
ũ− m

%

)〉
: ∇xũ dx dt

+

∫ τ

0

∫
Ω

〈Vt,x; (%ũ−m)〉 · ũ · ∇xũ dx.

Moreover, we use the equation

∂tũ + ũ · ∇xũ = −1

%̃
∇xp(%̃)

concluding

E
(
%,m

∣∣∣%̃, m̃) (τ) +D(τ)

<∼
∫ τ

0

∫
Ω

〈Vt,x; m− %ũ〉 ·
1

%̃
∇xp(%̃) dx dt−

∫ τ

0

∫
Ω

〈Vt,x; p(%)〉 divxũ dx dt

−
∫ τ

0

∫
Ω

[〈Vt,x; %〉 ∂tP ′(%̃) + 〈Vt,x; m〉 · ∇xP
′(%̃)− %̃∂tP ′(%̃)] dx dt

+

∫ τ

0

[
E
(
%,m

∣∣∣%̃, m̃) (τ) +D(τ)
]

dt.

3.6.3 Step 3 - pressure terms and conclusion

Finally, seeing that

P ′′(%̃) =
p′(%̃)

%̃
; whence

1

%̃
∇xp(%̃) = ∇xP

′(%̃),

and

E
(
%,m

∣∣∣%̃, m̃) (τ) +D(τ)

<∼ −
∫ τ

0

∫
Ω

〈Vt,x; p(%)〉 divxũ dx dt

−
∫ τ

0

∫
Ω

[
〈Vt,x; %ũ〉 ·

1

%̃
∇xp(%̃) + 〈Vt,x; %〉

1

%̃
∂tp(%̃)

]
dx dt+

∫ τ

0

∫
Ω

∂tp(%̃) dx dt

+

∫ τ

0

[
E
(
%,m

∣∣∣%̃, m̃) (τ) +D(τ)
]

dt.

Next,
∂tp(%̃) = −divx(p(%̃)ũ) + (p(%̃)− p′(%̃)%̃) divxũ, (3.24)
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and therefore

E
(
%,m

∣∣∣%̃, m̃) (τ) +D(τ)

<∼ −
∫ τ

0

∫
Ω

〈Vt,x; p(%)− p′(%̃)(%− %̃)− p(%̃)〉 divxũ dx dt

−
∫ τ

0

∫
Ω

[
〈Vt,x; %〉 ũ ·

1

%̃
∇xp(%̃) + 〈Vt,x; %〉

1

%̃
∂tp(%̃) + 〈Vt,x; %〉 p′(%̃)divxũ

]
dx dt

+

∫ τ

0

[
E
(
%,m

∣∣∣%̃, m̃) (τ) +D(τ)
]

dt.

Thus using (3.24) again, we conclude

E
(
%,m

∣∣∣%̃, m̃) (τ) +D(τ)

<∼ −
∫ τ

0

∫
Ω

〈Vt,x; p(%)− p′(%̃)(%− %̃)− p(%̃)〉 divxũ dx dt

+

∫ τ

0

[
E
(
%,m

∣∣∣%̃, m̃) (τ) +D(τ)
]

dt.

It remains to impose an extra hypothesis on the pressure function p so that

|p(%)− p′(%̃)(%− %̃)− p(%̃)| <∼ P (%)− P ′(%̃)(%− %̃)− P (%̃). (3.25)

Note that (3.25) is not automatically satisfied if the pressure p is merely strictly monotone, however,
it holds for the iconic examples of the isentropic and barotropic pressure law:

p(%) = a%γ, γ ≥ 1,

and, in the more general case

p ∈ C1[0,∞), p′(%) > 0 for % > 0, p(%)
<∼ (1 + P (%)) for all %. (3.26)

It is also easy to see that the above discussion extends easily to the class of Lipschitz continuous
strong solutions (instead of C1). We have shown the following rather remarkable result, cf. also
Gwiazda, Swierczewska–Gwiazda, Wiedemann [14].

Theorem 3.2. Let the pressure p = p(%) comply with the hypothesis (3.26). Let Ω ⊂ RN , N =
1, 2, 3 be a bounded Lipschitz domain. Suppose that [%̃, m̃] is a strong Lipschitz (in QT ) solution
of the Euler system (3.1–3.3) starting from the initial data

%(0, ·) = %0, m̃(0, ·) = m0, %0 ≥ % > 0 in Ω.

Let {Vt,x}(t,x)∈QT
be a (DMV) solution of the same problem such that

V0,x = δ%0(x),m0(x) for a.a. x ∈ Ω.

Then
Vt,x = δ%̃(t,x);m̃(t,x) for a.a. (t, x) ∈ QT .
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Similar results hold for the complete Euler system including the thermal effect, [3], [4] as well
as the compressible Navier–Stokes system [11] and the Navier–Stokes–Fourier system [5].

Acknowledgement
The author acknowledges hospitality and financial support of the University of Wuerzburg,

where this course was presented. The research leading to these results was also supported by
Einstein Foundation Berlin and Czech Science Foundation Prague.

References

[1] J.M. Ball. A version of the fundamental theorem for Young measures. In Lect. Notes in
Physics 344, Springer-Verlag, pages 207–215, 1989.

[2] J.M. Ball and F. Murat. Remarks on Chacons biting lemma. Proc. Amer. Math. Soc.,
107:655–663, 1989.
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