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Abstract

We consider the composite minimization problem with the objective function
being the sum of a continuously differentiable and a merely lower semicontinuous
and extended-valued function. The proximal gradient method is probably the most
popular solver for this class of problems. Its convergence theory typically requires
that either the gradient of the smooth part of the objective function is globally Lip-
schitz continuous or the (implicit or explicit) a priori assumption that the iterates
generated by this method are bounded. Some recent results show that, without
these assumptions, the proximal gradient method, combined with a monotone step-
size strategy, is still globally convergent with a suitable rate-of-convergence under
the Kurdyka–Łojasiewicz property. For a nonmonotone stepsize strategy, there exist
some attempts to verify similar convergence results, but, so far, they need stronger
assumptions. This paper is the first which shows that nonmonotone proximal gra-
dient methods for composite optimization problems share essentially the same nice
global and rate-of-convergence properties as its monotone counterparts, still without
assuming a global Lipschitz assumption and without an a priori knowledge of the
boundedness of the iterates.
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1 Introduction
We consider the composite optimization problem

min
x
ψ(x) := f(x) + ϕ(x), x ∈ X, (1.1)
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where f : X → R is continuously differentiable, ϕ : X → R is proper and lower semicontinuous,
and X denotes a Euclidean space (finite-dimensional Hilbert space). Note that neither f nor
ϕ has to be convex. Composite optimization problems of this kind occur frequently in many
applications like machine learning, data compression, matrix completion, image processing, low-
rank approximation, or dictionary learning [12, 13, 16, 17, 23, 24, 25].

In many applications, the nonsmooth term ϕ plays the role of a sparsity, regularization, or
penalty term. For example, the standard choice ϕ(x) := λ∥x∥1 for x ∈ Rn and a constant λ > 0
is known to impose some sparsity in different applications. On the other, improved sparsity can
often be obtained by using terms like ϕ(x) := λ∥x∥p with p ∈ (0, 1) or ϕ(x) := λ∥x∥0, with ∥x∥0
denoting the number of nonzero components of the vector x. Note that these two latter functions
ϕ are nonconvex, the second one is even discontinuous, but lower semicontinuous. The same is
true if ϕ represents the indicator function of a nonempty and closed feasible set. Furthermore,
we stress that the standard global Lipschitz assumption on the derivative of f is satisfied for
quadratic objective functions, but usually violated for more general nonlinear functions f . In
particular, this non-Lipschitz behaviour occurs if f stands for an augmented Lagrangian function
or for the dual of a (not necessarily uniformly convex) primal problem, cf. [15, 19]. This indicates
that it is reasonable to consider composite optimization problems in this general setting.

The standard solver for composite optimization problems is the proximal gradient method
given by the iteration

xk+1 := argminx∈X

{
f(xk) +

〈
f ′(xk), x− xk

〉
+

1

2γk
∥x− xk∥2 + ϕ(x)

}
(1.2)

for some given γk > 0, i.e., the new iterate xk+1 is obtained by using a simple quadratic approx-
imation of the nonlinear and smooth function f , whereas the nonsmooth function ϕ is moved
into the subproblem without any modifications. Using some simple algebraic manipulations, it
is well-known and easy to see that this procedure can be rewritten as

xk+1 := Proxγkϕ
(
xk − γkf

′(xk)
)

(1.3)

with the prox operator defined by

Proxγϕ(x) := argminz∈X

{
ϕ(z) +

1

2γ
∥z − x∥2

}
.

Observe that (1.2) reduces to the steepest descent method xk+1 := xk − γkf
′(xk) for ϕ ≡ 0,

which indicates that the parameter γk > 0 may be viewed as a stepsize.
Note that the proximal gradient method allows an efficient implementation only if the prox

operator can be evaluated in a simple way. Fortunately, there exist several practically relevant
scenarios where this prox operator can be computed either analytically or with a very small
computational overhead, cf. the excellent monograph [5] by Beck for a list of examples. The
same monograph is also a perfect reference for the existing convergence theory of proximal point
methods, at least for the case of convex functions ϕ.

Extensions of the convergence theory to nonconvex and only lower semicontinuous functions
ϕ occur in the seminal papers [4, 9]. Both papers cover global and rate-of-convergence results,
and their technique is based on a global Lipschitz assumption for the gradient of f and the
Kurdyka–Łojasiewicz (KL) property. While the latter seems indispensable, the former assumption
is very strong especially for applications with non-quadratic functions f . In some other papers,
this kind of global Lipschitz assumption is hidden by the a priori condition that the iterates
remain bounded or the assumption that the level sets of ψ are bounded, which itself implies the
boundedness of the iterates.

In the recent paper [21], it was shown that global convergence can also be obtained without
this global Lipschitz assumption, only the much weaker condition of f ′ begin locally Lipschitz
continuous is required (depending on the smoothness properties of ϕ, it might also be enough
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to have f only continuously differentiable). Moreover, the subsequent work [19] also shows that
one can obtain the standard global and rate-of-convergence results under the KL property, again
without the assumption that the derivative of f is globally Lipschitz continuous. These results
were obtained for a proximal gradient method with a suitably updated stepsize parameter γk in
such a way that the sequence of function values {ψ(xk)} is monotonically decreasing.

The situation is more delicate when we allow a nonmonotone stepsize rule, i.e., a choice of γk
such that the sequence {ψ(xk)} is no longer monotonically decreasing. The two most prominent
monotonicity strategies are the max-type rule by Grippo et al. [18] as well as the mean-type rule
[33] by Zhang and Hager. Both were originally introduced for smooth unconstrained optimization
problems and shown to provide global convergence under the same set of assumptions. A closer
inspection indicates, however, that the mean-type rule requires slightly weaker conditions than
the max-type rule. This is also reflected by the two recent papers [21, 14]. While [21] considers
a nonmonotone proximal gradient method with the max-type rule, the subsequent work [14]
investigates a nonmonotone proximal gradient method with the mean-type rule. Both papers
show that each accumulation point is a suitable stationary point of the objective function ψ,
but [21] requires a stronger (uniform continuity) assumption, whereas [14] shows that the con-
vergence theory for the monotone proximal gradient method can be adapted to the mean-type
nonmonotone version without any extra condition.

The aim of this paper is to present a convergence and a rate-of-convergence result for the
mean-type nonmonotone proximal gradient method under the KL property, and without assum-
ing a global Lipschitz assumption regarding f ′ or an a priori condition like the boundedness of
the iterates xk. To the best of our knowledge, this is the first time that such results are shown
without any of these extra conditions. Our results are build on a combination of ideas from
the convergence theory in the monotone setting as in [19], recent contributions to mean-type
nonmonotone proximal gradient methods in [14] and a refinement of the (global) convergence
theory in [30] for our setting with weaker assumptions. Unfortunately, the usual analysis for
monotone methods based on the KL property is already technical, and the introduction of the
nonmonotonicity complicates things even further. Nevertheless, we feel it is worth going through
this analysis taking into account that nonmonotone methods often outperform their monotone
versions in practical applications, see [14, 29] for numerical comparisons in the context of prox-
imal gradient methods. Taking this into account, we note that the current paper is a purely
theoretical work providing an improved insight into the behaviour of a well-established method
for the solution of composite optimization problems.

The paper is organized in the following way. We first recall some background material in
Section 2. We then state our nonmonotone proximal gradient method in Section 3 and recall some
of its basic properties. The corresponding convergence analysis is then presented in Section 4.
We close with some final remarks in Section 5.

Notation: We write ⟨x, y⟩ for the scalar product of two elements x, y ∈ X, and ∥x∥ for the
corresponding norm of x ∈ X. The induced distance of a point x ∈ X to a nonempty set S ⊆ X
is denoted by dist(x, S) := infy∈S ∥x − y∥. The closed ball around a given point x ∈ X with
radius r > 0 is denoted by Br(x). Given a differentiable mapping f : X → R, we write f ′(x) for
its derivative at x ∈ X. Finally, R denotes the set of real numbers, while R := (−∞,+∞] is the
set of extended reals except that we exclude the value −∞. Given an extended-valued function
θ : X → R, we call dom(θ) := {x ∈ X | θ(x) <∞} the domain of θ. The function θ is said to be
proper if dom(θ) is nonempty. Throughout this manuscript, we identify the dual space X∗ with
X itself.
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2 Background Material
We first recall that a sequence {xk} ⊆ X converges (locally) Q-linearly to some limit x∗ ∈ X if
there exists a constant c ∈ (0, 1) such that

∥xk+1 − x∗∥ ≤ c∥xk − x∗∥

holds for all k ∈ N sufficiently large. Furthermore, we say that {xk} converges R-linearly to x∗

if
lim sup
k→∞

∥xk − x∗∥1/k < 1

holds. Note that this property holds if there exist constants ω > 0 and µ ∈ (0, 1) such that
∥xk − x∗∥ ≤ ωµk for all k ∈ N sufficiently large, i.e., if the sequence ∥xk − x∗∥ is dominated by
a Q-linearly convergent null sequence.

We next recall some results from variational analysis and refer the interested reader to the
two monographs [26, 31] for more details.

Given a proper, lower semicontinuous function θ : X → R and any x ∈ dom(θ), we call

∂̂θ(x) :=
{
v ∈ X

∣∣∣ lim inf
y→x,y ̸=x

θ(y)− θ(x)− ⟨v, y − x⟩
∥y − x∥

≥ 0
}

the regular or Fréchet subdifferential of f at x, whereas

∂θ(x) :=
{
v ∈ X | ∃xk, vk ∈ X : xk → x, θ(xk) → θ(x), vk ∈ ∂̂θ(xk) ∀k

}
is called the limiting, Mordukhovich, or basic subdifferential of f at x. Recall that both sub-
differentials coincide with the convex subdifferential for convex functions θ, i.e., in this case, we
have

∂̂θ(x) = ∂θ(x) =
{
v ∈ X

∣∣ θ(y) ≥ θ(x) + ⟨v, y − x⟩ ∀y ∈ dom(θ)
}
,

whereas for general nonconvex functions, only the inclusion ∂̂θ(x) ⊆ ∂θ(x) holds. These two
subdifferentials have different properties, e.g., ∂̂θ(x) might be empty even for locally Lipschitz
continuous functions, whereas ∂θ(x) is known to be nonempty in this situation. Moreover, the
limiting subdifferential is robust in the following sense: Given a sequence {xk} converging to
some limit x and a corresponding sequence {vk} with vk ∈ ∂θ(xk) for all k ∈ N such that vk → v
for some v ∈ X, then the inclusion v ∈ ∂θ(x) holds. This robustness property is highly important
in the convergence theory for many algorithms in the context of nonsmooth optimization, and
simple examples show that, in general, it is not shared by the Fréchet subdifferential.

Given a lower semicontinuous function θ : X → R and a local minimum x∗ of θ, it follows
immediately from the definition of the Fréchet subdifferential that 0 ∈ ∂̂θ(x∗) holds. In particu-
lar, we therefore get 0 ∈ ∂θ(x∗). Any point x∗ satisfying this relation is called an M-stationary
point (M = Mordukhovich) or simply a stationary point of θ.

Now, coming back to our composite optimization problem where ψ = f + ϕ is the sum of a
continuously differentiable and a lower semicontinuous function, the sum rule

∂ψ(x) = f ′(x) + ∂ϕ(x) ∀x ∈ dom(ϕ) (2.1)

holds for the limiting subdifferential, cf. [26]. In particular, we therefore have a stationary point
x∗ of problem (1.1) if and only if

0 ∈ f ′(x∗) + ∂ϕ(x∗)

holds.
We finally introduce the Kurdyka–Łojasiewicz property which will play a central role for our

subsequent rate-of-convergence result. The following definition is a generalization of the classical
one for nonsmooth functions, as introduced in [3, 7, 8]. Note that this KL property plays a
central role in the local convergence analysis of several algorithms for the solution of nonsmooth
minimization problems, see [2, 4, 9, 10, 11, 19, 27, 28] for a couple of examples.
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Definition 2.1. Let g : X → R be lower semicontinuous. We say that g satisfies the Kur-
dyka–Łojasiewicz (KL) property at x∗ ∈ {x ∈ X | ∂g(x) ̸= ∅} if there exists a constant η > 0,
a neighborhood U ⊂ X of x∗, and a continuous and concave function χ : [0, η] → [0,∞), called
desingularization function, which is continuously differentiable on (0, η) and satisfies χ(0) = 0
and χ′(t) > 0 for all t ∈ (0, η), such that the so-called KL inequality

χ′(g(x)− g(x∗)
)
dist

(
0, ∂g(x)

)
≥ 1

holds for all x ∈ U ∩ {x ∈ X | g(x∗) < g(x) < g(x∗) + η}.

Note that there exist whole classes of functions where the KL property is known to hold with the
corresponding desingularization function χ(t) := ctκ for some κ ∈ (0, 1] and a constant c > 0,
where κ is called the KL exponent, see [8, 22]. This KL property looks somewhat artificial at a
first glance, but turns out to be a very useful and general tool for proving global convergence of
the entire sequence as well as local rate-of-convergence results. Moreover, for g being a convex
function, the KL property is known to be equivalent to several other concepts like a quadratic
growth condition, a proximal error bound, or the metric subregularity condition, see [32] for
more details and corresponding references.

We finally restate a technical result from [1, Lemma 1] which will be used in order to simplify
our final rate-of-convergence result.

Lemma 2.2. Let {sk} ⊆ [0,∞) be any monotonically decreasing sequence satisfying sk → 0 and

sαk ≤ β
(
sk − sk+1

)
for all k sufficiently large,

where α, β > 0 are suitable constants. Then the following statements hold:

(a) If α ∈ (0, 1], the sequence {sk} converges linearly to zero with rate 1− 1
β .

(b) If α > 1, there exists a constant η > 0 such that

sk ≤ ηk−
1

α−1 for all k sufficiently large.

3 Nonmonotone Proximal Gradient Method
This section gives a precise presentation of our nonmonotone proximal gradient method and
provides some of its basic properties. We first state the assumptions that we suppose to hold
throughout our theoretical investigation of the method.

Assumption 3.1. Assume:

(a) ψ is bounded from below on dom(ϕ),

(b) ϕ is bounded from below by an affine function,

(c) f ′ is locally Lipschitz continuous.

Note that the first condition is very reasonable since otherwise the given composite optimization
problem (1.1) would be unbounded from below. The second condition essentially guarantees
that the proximal gradient subproblems (1.2) have a solution (not necessarily a unique one) since
this implies that eventually the quadratic term dominates the behaviour of the corresponding
function. Finally, we stress that the local Lipschitz condition is equivalent to f ′ being globally
Lipschitz continuous on compact sets, and that this local Lipschitz property is a much weaker
condition than the usual global Lipschitz assumption, e.g., the exponential function, the natural
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logarithm, and all polynomials of degree higher than two are locally Lipschitz, but not globally
Lipschitz on their respective domains.

Before we present our algorithm, recall that the basic iteration of the proximal gradient
method is given by (1.2) or, equivalently, by (1.3). Observe that the next iterate xk+1 depends
on the choice of the stepsize parameter γk, though, for simplicity, this is not made explicit in our
notation. A central observation is that, for sufficiently small γk > 0, the corresponding solution
xk+1 satisfies the property

ψ(xk+1) ≤ ψ(xk)− ω
1

2γk
∥xk+1 − xk∥2 (3.1)

for any given parameter ω ∈ (0, 1), provided that xk is not already an M-stationary point of ψ,
see, e.g., [14, 21] for a formal proof. This implies that the sequence {ψ(xk)} is monotonically
decreasing. Now, suppose that we have a reference value Rk ≥ ψ(xk). Then, of course, any xk+1

satisfying the monotone criterion (3.1) also satisfies the inequality

ψ(xk+1) ≤ Rk − ω
1

2γk
∥xk+1 − xk∥2, (3.2)

but this condition might already be satisfied for a larger choice of γk, hence, resulting in a
larger step, which is the reason why nonmonotone methods often outperform their monotone
counterparts in practical applications.

In order to obtain suitable (global) convergence results, the reference value Rk has to be
chosen in a careful way. One popular choice is due to Grippo et al. [18], where Rk := max{ψ(xl) |
l = k, k − 1, . . . , k − lk} for some given lk ∈ N. We call this strategy the max-rule since Rk is
defined as the maximum function value over the last few iterates, say, the last ten points. In our
Algorithm 3.2, however, we use the technique introduced by Zhang and Hager [33], where Rk+1

is computed as a convex combination of the previous reference value Rk and the new function
value ψ(xk+1). We therefore call this the mean-rule. The details are given in Algorithm 3.2.
Note that, to be closer to the original version of this nonmonotonicity criterion, we replace the
constant ω ∈ (0, 1) used in (3.1) and (3.2) by a sequence of some values 1− αk ∈ (0, 1).

Algorithm 3.2 (Nonmonotone Proximal Gradient Method).
Require: x0 ∈ dom(ϕ), ε > 0, 0 < γmin ≤ γmax < ∞, 0 < αmin ≤ αmax < 1, 0 < βmin ≤

βmax < 1, pmin ∈ (0, 1].
1: set R0 := ψ(x0).
2: for k = 0, 1, 2, . . . do
3: choose γk ∈ [γmin, γmax].
4: compute xk+1 ∈ Proxγkϕ(x

k − γkf
′(xk)).

5: if ∥ 1
γk
(xk+1 − xk)− f ′(xk+1) + f ′(xk)∥ ≤ ε then

6: return x∗ := xk+1

7: end if
8: choose αk ∈ [αmin, αmax] and βk ∈ [βmin, βmax]
9: if ψ(xk+1) > Rk − 1−αk

2γk
∥xk+1 − xk∥2 then

10: set γk := βkγk and go back to step 4.
11: end if
12: choose pk+1 ∈ [pmin, 1] and set Rk+1 := (1− pk+1)Rk + pk+1ψ(x

k+1).
13: end for

We note that our convergence theory implicitly assumes that Algorithm 3.2 generates an infinite
sequence. In particular, we assume that the practical termination criterion included into line 5
of Algorithm 3.2 never holds. This test can be interpreted as a measure for xk+1 being close to
an M-stationary point, see [21] for further details. Note that this also implies that xk+1 ̸= xk
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holds for all k since otherwise the current iterate xk is both an M-stationary point of ψ and also
a point satisfying the termination criterion from line 5 of Algorithm 3.2.

The following properties can be verified for Algorithm 3.2, see [14, 21] for the details.

Lemma 3.3. Let Assumption 3.1 be satisfied. Then the following statements hold for each
sequence {xk} generated by Algorithm 3.2:

(a) Rk ≥ ψ(xk) for all k ∈ N.

(b) The sequence {Rk} is monotonically decreasing.

(c) The inner loop for the stepsize calculation γk is finite for each k (provided that xk is not
already an M-stationary point).

(d) ∥xk+1 − xk∥ → 0 for k → ∞.

The formal proof of this result can be found in [14, 21]. We note, however, that statements (a),
(b), and (c) are relatively simple to verify or standard observations. Part (d) is then a direct
consequence of these statements, in fact, from the computation of Rk, the acceptance criterion
for the stepsize γk, and the updates of the corresponding parameters, we obtain

Rk+1 = (1− pk+1)Rk + pk+1ψ(x
k+1)

≤ (1− pk+1)Rk + pk+1

(
Rk −

1− αk

2γk
∥xk+1 − xk∥2

)
(3.3)

≤ Rk − pmin
1− αmax

2γmax
∥xk+1 − xk∥2.

Rearranging these terms yields

Rk+1 −Rk ≤ −pmin
1− αmax

2γmax
∥xk+1 − xk∥2 ≤ 0 (3.4)

for all k ∈ N. Now, since ψ is bounded from below by Assumption 3.1, we obtain from Lemma 3.3
(a) that the sequence {Rk} is also bounded from below. In view of Lemma 3.3 (b), it follows
that this sequence is convergent. Consequently, the left-hand side from (3.4) converges to zero.
Hence, statement (d) of Lemma 3.3 is a consequence of (3.4) and the sandwich theorem.

We next summarize the main global convergence properties of Algorithm 3.2, the correspond-
ing proofs can be found in [14].

Theorem 3.4. Let Assumption 3.1 be satisfied and x∗ be an accumulation point of a sequence
{xk} generated by Algorithm 3.2. Then the following statements hold:

(a) x∗ is an M-stationary point of ψ.

(b) The sequence {ψ(xk)} converges to ψ(x∗).

(c) The sequence {Rk} converges monotonically to ψ(x∗).

Note that the central statement of Theorem 3.4 is assertion (a), the corresponding technical
proof in [14] follows the ideas from [21]. The other two statements are easier to verify. In
fact, statement (c) is mainly a consequence of the observation from Lemma 3.3 (b) that the
sequence {Rk} is monotonically decreasing, and the (usually nonmonotone) convergence of the
sequence {ψ(xk)} can then be derived from this observation together with the update of Rk+1

in Algorithm 3.2.
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4 Convergence Theory
Theorem 3.4 shows very satisfactory global (subsequential) convergence properties under fairly
mild assumptions regarding the two functions f and ϕ. The aim of this section (and of this paper)
is to show that, given some accumulation point of a sequence generated by Algorithm 3.2 such
that the KL property holds at this point, then the entire sequence converges to this limit point
and, in addition, has very favourable rate-of-convergence properties. In other words, we obtain
essentially the same convergence properties for our nonmonotone proximal gradient method as
those known for its monotone counterpart from [19]. Once again, we stress that this result holds
without any convexity of f or ϕ, without a global Lipschitz assumption regarding f ′, without
any explicit knowledge of a local Lipschitz constant, without an a priori assumption that the
sequence {xk} remains bounded, and with ϕ being merely lower semicontinuous.

The corresponding convergence theory requires some technical results which are inspired by
the corresponding ones in the papers [14, 19, 30] and modified in a suitable way to deal with the
above general setting.

To this end, we begin with the following result which is the nonmonotone counterpart of [19,
Lemma 4.1], see also [14, Corollary 4.5].

Lemma 4.1. Let Assumption 3.1 hold, {xk} be any sequence generated by Algorithm 3.2, and
let x∗ be an accumulation point of {xk}. Then, for each ρ > 0, there exists a constant γ

ρ
> 0

such that γk ≥ γ
ρ

holds for all k ∈ N satisfying xk ∈ Bρ(x
∗).

Proof. Recall that the stepsizes {γk} are well-defined in view of Lemma 3.3 (c). Let ρ > 0 be
fixed. Since f ′ is locally Lipschitz continuous, it is globally Lipschitz continuous on B2ρ(x

∗) with
Lipschitz constant denoted by L2ρ. Since x∗ is an accumulation point, there are infinitely many
iterates belonging to Bρ(x

∗).
Assume, by contradiction, that there exists a subsequence {xk}K with xk ∈ Bρ(x

∗) for all
k ∈ K and such that {γk}K is not bounded away from 0. Without loss of generality, we may
assume γk →K 0 and xk →K x̄ for some x̄ ∈ Bρ(x

∗), and that the acceptance criterion for the
computation of the stepsize γk is violated in the previous iteration of the inner loop. For the
corresponding trial stepsize γ̂k := γk/βk, we then have γk/βmax ≤ γ̂k ≤ γk/βmin. This shows
that we also have γ̂k →K 0.

Then the corresponding trial vector x̂k+1, i.e., the solution of the subproblem

min
x

f(xk) +
〈
f ′(xk), x− xk

〉
+

1

2γ̂k
∥x− xk∥2 + ϕ(x), x ∈ X, (4.1)

does not satisfy the stepsize condition with associated parameter α̂k ∈ [αmin, αmax], i.e.,

ψ(x̂k+1) > Rk −
1− α̂k

2γ̂k
∥x̂k+1 − xk∥2 ≥ Rk −

1− αmin

2γ̂k
∥x̂k+1 − xk∥2. (4.2)

Note that (4.2) in combination with Rk ≥ ψ(xk), cf. Lemma 3.3 (a), implies, in particular, that
we have xk ̸= x̂k+1. Moreover, since x̂k+1 is a solution of (4.1), we have〈

f ′(xk), x̂k+1 − xk
〉
+

1

2γ̂k
∥x̂k+1 − xk∥2 + ϕ(x̂k+1) ≤ ϕ(xk). (4.3)

Using the Cauchy-Schwarz inequality and the fact that ψ(xk) ≤ Rk ≤ R0 for all k by Lemma 3.3
(a), (b), we obtain

1

2γ̂k
∥x̂k+1 − xk∥2 ≤ ∥f ′(xk)∥∥x̂k+1 − xk∥+ ϕ(xk)− ϕ(x̂k+1)

= ∥f ′(xk)∥∥x̂k+1 − xk∥+ ψ(xk)− f(xk)− ϕ(x̂k+1)

≤ ∥f ′(xk)∥∥x̂k+1 − xk∥+R0 − f(xk)− ϕ(x̂k+1).
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Using the continuous differentiability of f and the boundedness condition from Assumption 3.1
for ϕ, we claim that the above inequality implies x̂k+1 − xk →K 0: Assume, by contradiction,
that {∥x̂k+1 − xk∥}k∈K would be unbounded, then the left-hand side would grow more rapidly
than the right-hand side. If {∥x̂k+1−xk∥}k∈K remains bounded but (at least on a subsequence)
staying away from zero, then the right-hand side is bounded but the left-hand side is unbounded
as we have γ̂k →K 0. Hence, we have x̂k+1 − xk →K 0.

Taking this into account and using the fact that x̄ ∈ Bρ(x
∗), it follows that

xk ∈ Bρ(x
∗) ⊂ B2ρ(x

∗) and x̂k+1 ∈ B2ρ(x
∗) for sufficiently large k ∈ K. (4.4)

We will exploit this observation later.
Using the differential mean-value theorem, there exists a point ξk on the line segment between

xk and x̂k+1 such that

ψ(x̂k+1)− ψ(xk) = f(x̂k+1) + ϕ(x̂k+1)− f(xk)− ϕ(xk)

=
〈
f ′(ξk), x̂k+1 − xk

〉
+ ϕ(x̂k+1)− ϕ(xk).

Substituting ϕ(x̂k+1)− ϕ(xk) into (4.3) yields〈
f ′(xk)− f ′(ξk), x̂k+1 − xk

〉
+

1

2γ̂k
∥x̂k+1 − xk∥2 + ψ(x̂k+1)− ψ(xk) ≤ 0.

Now, we obtain

1

2γ̂k
∥x̂k+1 − xk∥2 ≤ −

〈
f ′(xk)− f ′(ξk), x̂k+1 − xk

〉
+ ψ(xk)− ψ(x̂k+1)

≤ −
〈
f ′(xk)− f ′(ξk), x̂k+1 − xk

〉
+ ψ(xk)−Rk +

1− αmin

2γ̂k
∥x̂k+1 − xk∥2

≤ ∥f ′(xk)− f ′(ξk)∥∥x̂k+1 − xk∥+ 1− αmin

2γ̂k
∥x̂k+1 − xk∥2,

where the second inequality is due to (4.2) and the final estimate follows from the Cauchy-
Schwarz inequality together with Rk ≥ ψ(xk), cf. Lemma 3.3 (a). As x̂k+1 ̸= xk in view of our
previous discussion, the resulting expression can be simplified to

αmin

2γ̂k
∥x̂k+1 − xk∥ ≤ ∥f ′(xk)− f ′(ξk)∥.

Since ξk is on the line connecting xk and x̂k+1, it follows from (4.4) that also ξk ∈ B2ρ(x
∗)

holds for all k ∈ K sufficiently large. Thus, using the Lipschitz continuity of f ′ on B2ρ(x
∗), we

conclude
αmin

2γ̂k
∥x̂k+1 − xk∥ ≤ L2ρ∥xk − ξk∥ ≤ L2ρ∥xk − x̂k+1∥.

As x̂k+1 ̸= xk, we get γ̂k ≥ αmin
2L2ρ

for all k ∈ K sufficiently large. This, in turn, implies that the
corresponding subsequence {γk}K is also bounded from below by a positive constant, but this
contradicts our assumption. Altogether, this completes the proof.

For the remaining part, assume that our objective function ψ satisfies the KL property at a given
accumulation point x∗. Let η > 0 be the corresponding constant and χ the associated desin-
gularization function from Definition 2.1. Furthermore, we denote by {xk}k∈K a subsequence
converging to x∗.

The subsequent theory requires some further constants and indices which will be introduced
here and which will be used throughout the remaining part of this section. To this end, we first
note that, in view of Lemma 3.3 (d), there exists an index k̂ ∈ N such that

sup
k≥k̂

∥xk+1 − xk∥ ≤ η. (4.5)

9



Define
ρ := η +

1

2
and Cρ := Bρ(x

∗) ∩
{
x ∈ X

∣∣ψ(x) ≤ R0

}
.

Let Lρ be a global Lipschitz constant of f ′ on Cρ. By Lemma 4.1, there exists a constant γ
ρ
> 0

such that
γk ≥ γ

ρ
for all k with xk ∈ Cρ.

Following mostly [30], we also introduce the following notation:

• m := min
{
l ∈ N

∣∣ (1−√
1− pmin)

√
l ≥ (1 +

√
1− pmin)

}
,

• l(k) := k +m− 1,

• Ξk−1 :=
√
Rk−1 −Rk for k ∈ N and

• ∆i,j := χ
(
Ri − ψ(x∗)

)
− χ

(
Rj − ψ(x∗)

)
.

Note that the index m is obviously uniquely defined since the left-hand side of the inequality
eventually becomes larger than the constant on the right-hand side. Furthermore, note that the
difference l(k)− k = m− 1 is a constant number for all k ∈ N, in particular, this difference does
not increase to infinity for k → ∞. This simple observation plays some role in the subsequent
convergence analysis since it guarantees that certain sums are always taken over a finite (fixed)
number of terms only. Moreover, we note that Ξk−1 ≥ 0 holds for all k ∈ N by the monotonicity
property of the sequence {Rk} from Lemma 3.3 (b). Finally, we also have ∆i,j ≥ 0 for all j ≥ i
by monotonicity of χ in combination with Lemma 3.3 (b) once again.

We further introduce the two index sets

K1 :=
{
k ∈ N

∣∣ψ(xk) ≤ Rk+m

}
,

and
K2 :=

{
k ∈ N

∣∣ψ(xk) > Rk+m

}
depending on the previously introduced number m. To simplify the notation, we define the
constant

a :=
1− αmax

2γmax
> 0.

Using the update rule for Rk together with the acceptance criterion for the step size γk, we
obtain

Rk ≤ Rk−1 −
1− αk−1

2γk−1
pk∥xk − xk−1∥2 ≤ Rk−1 − apmin∥xk − xk−1∥2,

cf. (3.3). Therefore, √
apmin∥xk − xk−1∥ ≤ Ξk−1. (4.6)

The following results and proofs are motivated by the corresponding analysis in [30]. However,
to avoid the a priori assumption that the sequence generated by Algorithm 3.2 is bounded, we
need to modify the arguments to some extend, using ideas from [19, 21].

Lemma 4.2. Define the constant ĉ :=
√
pmin

2
√
a

(
1
γ
ρ

+ Lρ

)
. Then there exists a sufficiently large

index k0 ∈ K such that

α := ∥xk0−1 − x∗∥+ 4
√
apmin

l(k0)∑
j=k0

Ξj−1 +
2ĉ

√
apmin

l(k0)∑
j=k0

χ
(
Rj − ψ(x∗)

)
(4.7)

satisfies α < 1
2 and Bα(x

∗) ⊂ U , where U is the neighborhood of x∗ from the KL property in
Definition 2.1.
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Proof. First recall that l(k)− k = m− 1 is a fixed constant, hence, the number of terms within
each of the summations is fixed, independent of k. Therefore, it is easy to see that each term on
the right-hand side can be made arbitrarily small: For the first term, this follows from xk →K x∗

together with the fact that ∥xk − xk−1∥ → 0 in view of Lemma 3.3 (d). For the second term,
recall that Rk → ψ(x∗) monotonically by Theorem 3.4 (c). For the final term, note again that
Rk → ψ(x∗) monotonically and that, by definition, the desingularization function χ is continuous
at the origin.

Note that, in principle, Lemma 4.2 holds for an arbitrary constant ĉ > 0. However, the index
k0 depends on this constant ĉ. Since the previous result will later be applied to the particular
choice of ĉ from Lemma 4.2 with the corresponding index k0, the previous result is formulated
for this particular value of ĉ.

The following result is the nonmonotone counterpart of [19, Lemma 4.4]. Regarding its
assumption, we recall from Theorem 3.4 that the sequence {Rk} converges monotonically to the
function value ψ(x∗) at the accumulation point x∗, hence, we eventually have Rk < ψ(x∗) + η,
where η > 0 denotes the constant from Definition 2.1.

Lemma 4.3. Under the conditions specified above, we have

dist
(
0, ∂ψ(xk+1)

)
≤
( 1

γ
ρ

+ Lρ

)
∥xk+1 − xk∥ (4.8)

for all sufficiently large k ∈ N such that xk ∈ Bα(x
∗) holds.

Proof. For all k, since xk+1 solves the proximal gradient subproblem (1.2), we obtain

0 ∈ f ′(xk) +
1

γk
(xk+1 − xk) + ∂ϕ(xk+1) (4.9)

from the M-stationary condition together with the sum rule (2.1) for the Mordukhovich subdif-
ferential. This implies

1

γk
(xk − xk+1) + f ′(xk+1)− f ′(xk) ∈ f ′(xk+1) + ∂ϕ(xk+1) = ∂ψ(xk+1) (4.10)

using once again the sum rule from (2.1). Take k ∈ N sufficiently large such that xk ∈ Bα(x
∗)

and k ≥ k̂, where k̂ is the index from (4.5) and α is the constant defined in Lemma 4.2. Since
α ≤ ρ, we have γk ≥ γ

ρ
by Lemma 4.1. Now, the estimate

∥xk+1 − x∗∥ ≤ ∥xk+1 − xk∥+ ∥xk − x∗∥ ≤ η + α ≤ ρ

shows that xk, xk+1 ∈ Cρ. Therefore, we get

∥f ′(xk+1)− f ′(xk)∥ ≤ Lρ∥xk+1 − xk∥.

Using the bound on γk and (4.10) gives

dist
(
0, ∂ψ(xk+1)

)
≤
∥∥∥ 1

γk
(xk − xk+1) + f ′(xk+1)− f ′(xk)

∥∥∥
≤ 1

γk
∥xk − xk+1∥+ Lρ∥xk+1 − xk∥

≤
( 1

γ
ρ

+ Lρ

)
∥xk+1 − xk∥

for all k with k ≥ k̂ and xk ∈ Bα(x
∗).
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We now present our final technical result, motivated by [30].

Lemma 4.4. For all sufficiently large k ∈ N with Rk < ψ(x∗) + η and xk−1 ∈ Bα(x
∗), the

following inequality holds:

1−
√
1− pmin√
m

l(k)∑
i=k

Ξi ≤
(
1/2 +

√
1− pmin

)
Ξk−1 + ĉ∆k,k+m, (4.11)

where ĉ denotes the constant from Lemma 4.2.

Proof. First note that x 7→
√
x is a concave function, thus the application of Jensen’s inequality

yields

1−
√
1− pmin√
m

l(k)∑
i=k

Ξi ≤
(
1−

√
1− pmin

)√
Rk −Rk+m. (4.12)

We now distinguish two cases.
Case 1: k ∈ K1. We then have ψ(xk) ≤ Rk+m, which implies

Rk −Rk+m = (1− pk)Rk−1 + pkψ(x
k)−Rk+m

≤ (1− pk)Rk−1 + pkRk+m −Rk+m

= (1− pk)(Rk−1 −Rk+m)

≤ (1− pmin)(Rk−1 −Rk+m) (recall that Rk−1 ≥ Rk+m)

= (1− pmin)(Rk−1 −Rk +Rk −Rk+m).

Using
√
x+ y ≤

√
x+

√
y for all x, y ∈ R≥0, we obtain(
1−

√
1− pmin

)√
Rk −Rk+m ≤

√
1− pminΞk−1.

The statement therefore follows from (4.12).
Case 2: k ∈ K2. We then have ψ(x∗) ≤ Rk+m < ψ(xk) ≤ Rk < ψ(x∗) + η by assumption.
Using the KL property of χ, we get

χ′(ψ(xk)− ψ(x∗)
)
dist

(
0, ∂ψ(xk)

)
≥ 1.

As xk−1 was assumed to be in Bα(x
∗), by application of Lemma 4.3, we have

χ′(ψ(xk)− ψ(x∗)
)
≥ 1(

1
γ
ρ

+ Lρ

)
∥xk − xk−1∥

(4.13)

(recall that xk ̸= xk−1 since Algorithm 3.2 is assumed to generate an infinite sequence). Using
the properties of χ, we now obtain

∆k,k+m = χ
(
Rk − ψ(x∗)

)
− χ

(
Rk+m − ψ(x∗)

)
≥ χ

(
ψ(xk)− ψ(x∗)

)
− χ

(
Rk+m − ψ(x∗)

)
≥ χ′(ψ(xk)− ψ(x∗)

)(
ψ(xk)−Rk+m

)
≥ ψ(xk)−Rk+m(

1
γ
ρ

+ Lρ

)
∥xk − xk−1∥

,

where the first inequality results from the monotonicity of χ, the next one exploits the concavity
of χ, and the final estimate exploits (4.13) together with the fact that ψ(xk)−Rk+m > 0 in the
case under consideration. Thus, with (4.6), we get

ψ(xk)−Rk+m ≤ 2ĉ

pmin
Ξk−1∆k,k+m

12



from the definition of ĉ. Similar to the first case, our aim is to bound the difference Rk −Rk+m.
Using the fact that ψ(xk) ≤ Rk−1 by the acceptance criterion for our stepsize computation as
well as pk ≥ pmin, we have

pkψ(x
k) + (1− pk)Rk−1 ≤ pminψ(x

k) + (1− pmin)Rk−1.

Together with the definition of Rk := (1− pk)Rk−1 + pkψ(x
k), this yields

Rk −Rk+m = pkψ(x
k) + (1− pk)Rk−1 −Rk+m

≤ pminψ(x
k) + (1− pmin)Rk−1 − pminRk+m − (1− pmin)Rk+m

= pmin

(
ψ(xk)−Rk+m

)
+ (1− pmin)(Rk−1 −Rk+m)

≤ 2ĉΞk−1∆k,k+m + (1− pmin)(Rk−1 −Rk+m)

= 2ĉΞk−1∆k,k+m + (1− pmin)(Rk−1 −Rk +Rk −Rk+m).

Taking square roots on both sides and using
√
x+ y ≤

√
x+

√
y for all x, y ∈ R≥0, we obtain√

Rk −Rk+mn ≤
√
2ĉΞk−1∆k,k+m +

√
1− pmin

(√
Rk−1 −Rk +

√
Rk −Rk+m

)
,

so we have (
1−

√
1− pmin

)√
Rk −Rk+m ≤

√
2ĉΞk−1∆k,k+m +

√
1− pminΞk−1.

Exploiting the inequality 2
√
xy ≤ x+ y for all x, y ∈ R≥0, this yields

(
1−

√
1− pmin

)√
Rk −Rk+m ≤

(1
2
+
√
1− pmin

)
Ξk−1 + ĉ∆k,k+m.

In view of (4.12), this completes the proof.

The following result shows global convergence of the entire sequence {xk} generated by the
nonmonotone proximal gradient method to one of its accumulation points x∗, given that ψ
satisfies the KL property at this point. The proof follows the technique of the global convergence
result in [30]. However, by using our previous results, we neither assume the a priori boundedness
of the iterates {xk} nor do we require f to satisfy a global Lipschitz condition.

Theorem 4.5. Let Assumption 3.1 hold, let {xk}K be a subsequence converging to some limit
point x∗, and suppose that the KL property for ψ holds at x∗. Then the entire sequence {xk}
converges to x∗.

Proof. Let k0 be the index from the definition of α, cf. Lemma 4.2. Without loss of generality,
we may assume k0 ≥ k̂, where k̂ is the index from (4.5) and that Rk0 < ψ(x∗) + η. We now
claim that the following statements hold:

(a) for all k ≥ k0 − 1: xk ∈ Bα(x
∗), and

(b) for all k ≥ l(k0):

(
1−
√

1− pmin

)√
m

k∑
j=l(k0)

Ξj ≤
(1
2
+
√

1− pmin

) k∑
j=k0

Ξj−1+ ĉ

l(k0)∑
j=k0

χ
(
Rj−ψ(x∗)

)
, (4.14)

where ĉ denotes the constant from Lemma 4.2. We verify these two statements jointly by
induction over k. For all k ∈ {k0 − 1, . . . , l(k0)}, we obtain from (4.6) and the definition of
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the constant α in Lemma 4.2 that

∥xk − x∗∥ ≤ ∥xk0−1 − x∗∥+
k∑

j=k0

∥xj − xj−1∥

≤ ∥xk0−1 − x∗∥+
l(k0)∑
j=k0

∥xj − xj−1∥

≤ ∥xk0−1 − x∗∥+ 1
√
apmin

l(k0)∑
j=k0

Ξj−1 ≤ α,

which shows the first statement for k = k0 − 1, . . . , l(k0). Now, we can apply Lemma 4.4 for
indices k = k0, . . . , l(k0) and obtain

(
1−

√
1− pmin

)√
mΞl(k0) ≤

1−
√
1− pmin√
m

l(k0)∑
j=k0

l(j)∑
i=j

Ξi

≤
(
1/2 +

√
1− pmin

) l(k0)∑
j=k0

Ξj−1 + ĉ

l(k0)∑
j=k0

∆j,j+m

≤
(
1/2 +

√
1− pmin

) l(k0)∑
j=k0

Ξj−1 + ĉ

l(k0)∑
j=k0

χ
(
Rj − ψ(x∗)

)
,

where the first inequality follows from the fact that the term Ξl(k0) occurs m times within the
double sum on the right-hand side, whereas the other expressions Ξi are nonnegative, and the
second inequality is obtained by summing (4.11) in Lemma 4.4 from k0 to l(k0). In the final
estimate, we simply omit some nonpositive terms. This shows that the second statement holds
for k = l(k0).

Suppose that the first statement holds for all j from k0 − 1 to some k ≥ l(k0) and that the
second statement is true for k ≥ l(k0). We first show that the second statement for k implies
the first statement for k + 1. Using (4.14), we get

(
1−

√
1− pmin

)√
m

k∑
j=l(k0)

Ξj

≤
(1
2
+
√

1− pmin

) k∑
j=k0

Ξj−1 + ĉ

l(k0)∑
j=k0

χ
(
Rj − ψ(x∗)

)
≤
(1
2
+
√

1− pmin

)( l(k0)∑
j=k0

Ξj−1 +
k∑

j=l(k0)+1

Ξj−1

)
+ ĉ

l(k0)∑
j=k0

χ
(
Rj − ψ(x∗)

)

≤
(1
2
+
√

1− pmin

)( l(k0)∑
j=k0

Ξj−1 +
k∑

j=l(k0)

Ξj

)
+ ĉ

l(k0)∑
j=k0

χ
(
Rj − ψ(x∗)

)
.

This implies ((
1−

√
1− pmin

)√
m−

(1
2
+
√
1− pmin

)) k∑
j=l(k0)

Ξj

≤
(1
2
+
√

1− pmin

) l(k0)∑
j=k0

Ξj−1 + ĉ

l(k0)∑
j=k0

χ
(
Rj − ψ(x∗)

)
.
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Noting that, by definition of m, it holds that
(
1 −

√
1− pmin

)√
m −

(
1/2 +

√
1− pmin

)
≥ 1/2

and that we obviously have 1/2 +
√
1− pmin ≤ 3/2, we get

k∑
j=l(k0)

Ξj ≤ 3

l(k0)∑
j=k0

Ξj−1 + 2ĉ

l(k0)∑
j=k0

χ
(
Rj − ψ(x∗)

)
.

This implies

k∑
j=k0−1

Ξj =

l(k0)∑
j=k0

Ξj−1 +

k∑
j=l(k0)

Ξj ≤ 4

l(k0)∑
j=k0

Ξj−1 + 2ĉ

l(k0)∑
j=k0

χ
(
Rj − ψ(x∗)

)
,

hence, we obtain from (4.6) that

∥xk+1 − x∗∥ ≤ ∥xk0−1 − x∗∥+
k∑

j=k0−1

∥xj+1 − xj∥ ≤ ∥xk0−1 − x∗∥+ 1
√
apmin

k∑
j=k0−1

Ξj

≤ ∥xk0−1 − x∗∥+ 4
√
apmin

l(k0)∑
j=k0

Ξj−1 +
2ĉ

√
apmin

l(k0)∑
j=k0

χ
(
Rj − ψ(x∗)

)
.

(4.15)

The expression on the right-hand side is precisely the constant α from Lemma 4.2. Thus, the
first statement holds for k + 1.

We next verify the second part for k + 1. Since we know that xj ∈ Bα(x
∗) is true for all

j ∈ {k0 − 1, . . . , k + 1} by our induction hypothesis, we again apply Lemma 4.4 and sum over
(4.11), now from k0 to k + 1. This yields

(
1−

√
1− pmin

)√
m

k+1∑
j=l(k0)

Ξj ≤
1−

√
1− pmin√
m

k+1∑
j=k0

l(j)∑
i=j

Ξi

≤
(
1/2 +

√
1− pmin

) k+1∑
j=k0

Ξj−1 + ĉ

k+1∑
j=k0

∆j,j+m

≤
(
1/2 +

√
1− pmin

) k+1∑
j=k0

Ξj−1 + ĉ

l(k0)∑
j=k0

χ
(
Rj − ψ(x∗)

)
,

where the first inequality results from the fact that each term Ξj for j = l(k0), . . . , k+1 from the
left-hand side occurs m times within the double sum from the right-hand side (observe that the
relation l(j+1) = l(j)+1 holds for all j), whereas the remaining expressions Ξi are nonnegative,
the next inequality exploits (4.11) from Lemma 4.4, and the final estimate uses a telescoping
sum argument where we omit some nonpositive summands. This completes our induction step.

Hence, it follows that xk ∈ Bα(x
∗) for all k ≥ k0 − 1. Taking k → ∞ in the resulting

expression for
∑k

j=k0−1 ∥xj+1 − xj∥ from (4.15) then shows that {xk}k∈N is a Cauchy sequence
and, therefore, convergent. Thus, the accumulation point x∗ is the limit of the entire sequence
{xk}.

Next, we present a rate-of-convergence result for the case where the desingularization function is
given by χ(t) = ctκ for some c > 0 and κ ∈ (0, 1). We recover the same rate-of-convergence as for
the monotone proximal gradient method. The proof is based on [19] with suitable adaptations
for the nonmonotone case.

Theorem 4.6. Let Assumption 3.1 hold, and suppose that {xk} converges on some subsequence
{xk}K to a limit point x∗ such that ψ has the KL property at x∗. Then the entire sequence {xk}
converges to x∗. Further, if the corresponding desingularization function is given by χ(t) = ctκ

(for some c > 0 and κ ∈ (0, 1)), then the following statements hold:
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(a) If κ ∈ [1/2, 1), then {Rk} converges Q-linearly to ψ(x∗) and {xk} converges R-linearly to
x∗.

(b) If κ ∈ (0, 1/2), then there exist constants η1, η2 > 0 such that for all k large enough it
holds that

Rk − ψ(x∗) ≤ η1k
− 1

1−2κ , (4.16)

∥xk − x∗∥ ≤ η2k
− κ

1−2κ . (4.17)

Proof. Taking Theorem 4.5 into account, we only need to verify the statements (a) and (b). As
a first step, let us prove the results for the {Rk}. We first claim that for κ ∈ (0, 1) and with

σ :=
1− αmax

2γmax

pmin

c2κ2
(

1
γ
ρ

+ Lρ

)2 ,
it holds that

ψ(xk+1)− ψ(x∗) ≤
( 1
σ

) 1
2(1−κ) (Rk −Rk+1

) 1
2(1−κ) (4.18)

for all k ∈ N sufficiently large. In fact, if ψ(xk+1) ≤ ψ(x∗) holds, then the left-hand side of
(4.18) is nonpositive, hence, the claim holds trivially, Thus, it remains to consider the case
ψ(xk+1) > ψ(x∗). In view of our previous results, we may assume that k is large enough such
that xk ∈ Bα(x

∗) and ψ(x∗) < ψ(xk+1) < ψ(x∗) + η hold.
As ψ satisfies the KL property at x∗ with χ(t) = ctκ, we have

1 ≤ χ′(ψ(xk+1)− ψ(x∗)
)
dist

(
0, ∂ψ(xk+1)

)
= cκ

(
ψ(xk+1)− ψ(x∗)

)κ−1
dist

(
0, ∂ψ(xk+1)

)
.

By Lemma 4.3, this yields

1 ≤ cκ
( 1

γ
ρ

+ Lρ

)(
ψ(xk+1)− ψ(x∗)

)κ−1∥xk+1 − xk∥,

which gives the inequality

∥xk+1 − xk∥ ≥ 1

cκ
(

1
γ
ρ

+ Lρ

)(ψ(xk+1)− ψ(x∗)
)1−κ

. (4.19)

By (3.3), we also have

Rk+1 −Rk ≤ −1− αmax

2γmax
pmin∥xk+1 − xk∥2. (4.20)

Combination of (4.19) and (4.20) yields

Rk+1 −Rk ≤ −1− αmax

2γmax
pmin∥xk+1 − xk∥2

≤ −1− αmax

2γmax
pmin

1

c2κ2
(

1
γ
ρ

+ Lρ

)2 (ψ(xk+1)− ψ(x∗)
)2(1−κ)

= −σ
(
ψ(xk+1)− ψ(x∗)

)2(1−κ)
.

Rearranging these terms shows that the claim (4.18) holds.
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Next recall that, by the acceptance criterion for the stepsize γk, we always have ψ(xk+1) ≤ Rk.
Hence, it follows that

Rk+1 = (1− pk+1)Rk + pk+1ψ(x
k+1) ≤ (1− pmin)Rk + pminψ(x

k+1). (4.21)

Denote by {sk} the sequence defined by sk := Rk −ψ(x∗) ≥ 0. Then sk → 0 monotonically, and
we obtain

sk+1 ≤ (1− pmin)sk + pmin(ψ(x
k+1)− ψ(x∗))

≤ (1− pmin)sk + pmin

( 1
σ

) 1
2(1−κ) (

sk − sk+1

) 1
2(1−κ) ,

where the first inequality follows from (4.21) and the second one results from (4.18). This implies

sk ≤ 1

pmin
(sk − sk+1) +

( 1
σ

) 1
2(1−κ) (

sk − sk+1

) 1
2(1−κ)

≤

(
1

pmin
+

(
1

σ

) 1
2(1−κ)

)
(sk − sk+1)

min{1, 1
2(1−κ)

}

for all k sufficiently large. As for all a, b > 0 it holds that 1/min{a, b} = max{1/a, 1/b}, it
follows that

s
max{1,2(1−κ)}
k ≤ β(sk − sk+1),

where

β :=

(
1

pmin
+

(
1

σ

) 1
2(1−κ)

)max{1,2(1−κ)}

> 0

is a constant.
We are now in the setting of Lemma 2.2 and immediately obtain the corresponding rate-

of-convergence results for the sequence {Rk} as κ ∈ (0, 1/2) implies that 2(1 − κ) > 1 and
κ ∈ [1/2, 1) implies that 2(1− κ) ∈ (0, 1].

Let us now verify the statements for the sequence {xk}. In view of Theorem 4.5, the equations
in the proof of that result remain valid if k0−1 is replaced by some k sufficiently large. Note that
Ξj−1 ≤

√
Rj−1 − ψ(x∗) =

√
sj−1. Taking the monotonicity of the function χ and the sequences

{Rk} and thus {sk} into account, it follows from (4.15) that, for l > k:

∥xk − xl∥ ≤
l−1∑
j=k

∥xj+1 − xj∥

≤ 4
√
apmin

l(k+1)∑
j=k+1

Ξj−1 +
2ĉ

√
apmin

l(k+1)∑
j=k+1

χ
(
Rj − ψ(x∗)

)
≤ 4

√
apmin

l(k+1)∑
j=k+1

√
sj−1 +

2ĉ
√
apmin

l(k+1)∑
j=k+1

χ(sj)

≤ 4m
√
apmin

√
sk +

2ĉm
√
apmin

χ(sk)

≤ η̃s
min{1/2,κ}
k

for all k sufficiently large, where

η̃ :=
4 + 2ĉc
√
apmin

m.

Taking now l → ∞, together with the corresponding rate-of-convergence results for {sk} from
the first part, this completes the proof.
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We finally consider a generalized projected gradient method as a simple application of our theory.

Example 4.7. (Generalized Nonmonotone Projected Gradient Method)
Consider the constrained optimization problem

min f(x) subject to x ∈ S

for some given set S ⊆ X which is assumed to be nonempty and closed (not necessarily convex).
This problem can be reformulated as the unconstrained composite optimization problem

min f(x) + ϕ(x), x ∈ X,

where ϕ(x) := δS(x) denotes the indicator function of S, i.e., δS(x) = 0 for x ∈ S and δS(x) =
+∞ otherwise. Since S is nonempty and closed, this indicator function is proper and lower
semicontinuous. Moreover, the proximal subproblem (1.3) reduces to compute a projection of a
given point onto the set S. Recall that this projection always exists, albeit it is not necessarily
unique since S is not assumed to be convex. Consequently, if f satisfies Assumption 3.1 (c), and
in particular if f further has the respective KL property, our convergence results apply to this
generalized projected gradient method. Note that this may be viewed as a generalization of the
famous spectral gradient method from [6] where the feasible set S is assumed to be convex (and
the globalization uses the max-type nonmonotone stepsize rule, see also the extension in [20]).

5 Final Remarks
The current paper presents a global and rate-of-convergence result for nonmonotone proximal
gradient methods applied to composite optimization problems under fairly mild assumptions.
To the best of our knowledge, this is the first time that results of this kind are shown for a
nonmonotone method without a global Lipschitz assumption or the a priori knowledge that the
iterates generated by the given method are bounded. Though the technique of proof is quite
technical and it is currently not clear whether these results can be extended to other classes of
first-order methods, we plan to have a closer look at this topic as part of our future research.

Acknowledgement. The authors thank Xiaoxi Jia for her comments on a previous version of
the manuscript which helped to improve Theorem 4.6.
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