English Intern
Mathematik in den Naturwissenschaften

Publikationen

 

 

 

  1. R. Fechte-Heinen, A. Schlömerkemper, About lamination upper and convexification lower bounds on the free energy of monoclinic shape memory alloys in the context of T3-configurations and R-phase formation, Cont. Mech. Thermodyn. 28, 1601-1621 (2016)
  2. C. Reina, A. Schlömerkemper, S. Conti, Derivation of F=FeFp as the continuum limit of crystalline slip, J. Mech. Phys. Solids 89 231-254 (2016), arXiv:1504.06775
  3. A. Schlömerkemper, I.V. Chenchiah, R. Fechte-Heinen, D. Wachsmuth, Upper and lower bounds on the set of recoverable strains and on effective energies in cubic-to-monoclinic martensitic phase transformations, MATEC Web of Conferences 33, 02011 (2015) [Published version]
  4. G. Lazzaroni, M. Palombaro and A. Schlömerkemper, A discrete to continuum analysis of dislocations in nanowire heterostructures, Comm. Math. Sci. 13, 1105-1133 (2015), arXiv:1308.3505 [Postprint version]
  5. M. Schäffner and A. Schlömerkemper, On a Gamma-convergence analysis of a quasicontinuum method, Multiscale Model. Simul. 13, 132–172 (2015), arXiv:1405.6122 [Published version]
  6. T. Blesgen and A. Schlömerkemper, On the Allen-Cahn/Cahn-Hilliard-System with geometrically linear elastic energy, Proc. Roy. Soc. Edin. 144, 241-266 (2014), arXiv:1202.5197 [Postprint version]
  7. I.V. Chenchiah and A. Schlömerkemper, Non-Laminate Microstructures in Monoclinic-I Martensite, Arch. Rational Mech. Anal. 207, 39-74 (2013), arXiv:1201.6679 [Postprint version] [OPUS Würzburg]
  8. L. Scardia, A. Schlömerkemper and C. Zanini, Towards uniformly Gamma-equivalent theories for nonconvex discrete systems, Discrete Contin. Dyn. Syst. B, 17, 661-686 (2012) [Preprint version. Published by AMS. All rights reserved.]
  9. L. Scardia, A. Schlömerkemper and C. Zanini, Boundary layer energies for nonconvex discrete systems, Math. Models Methods Appl. Sci., 21, 777-817 (2011) [Postprint version. Electronic version © DOI]
  10. K. Bhattacharya and A. Schlömerkemper, Stress-induced phase transformations in shape-memory polycrystals, Arch. Rational Mech. Anal. 196, 715-751 (2010)
  11.  A. Schlömerkemper and  B. Schmidt , Discrete-to-continuum limit of magnetic forces: dependence on the distance between bodies, Arch. Rational Mech. Anal. 192, 589-611 (2009)
  12. A. Schlömerkemper, About solutions of Poisson's equation with transition condition in non-smooth domains, Z. Anal. Anwend. 27, 253-281 (2008) [MPI-MIS preprint 53/2006]
  13. N. Popovic, D. Praetorius and A. Schlömerkemper, Analysis and numerical simulation of magnetic forces between rigid polygonal bodies. Part II: Numerical Simulation, Contin. Mech. Thermodyn. 19, 81-109 (2007) [Postprint version]
  14. N. Popovic, D. Praetorius and A. Schlömerkemper, Analysis and numerical simulation of magnetic forces between rigid polygonal bodies. Part I: Analysis, Contin. Mech. Thermodyn. 19, 67-80 (2007) [Postprint version]
  15. A. Schlömerkemper, Lattice approximation of a surface integral and convergence of a singular lattice sum, Asymptot. Anal. 52, 95-115 (2007) [MPI-MIS preprint 86/2005]
  16. C. Lexcellent and A. Schlömerkemper, Comparison of several models for the determination of the phase transformation yield surface in shape-memory alloys with experimental data, Acta Mat. 55, 2995-3006 (2007) [Postprint version © 2007. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.]
  17. A. Schlömerkemper, Mathematical derivation of the continuum limit of the magnetic force between two parts of a rigid crystalline material, Arch. Rational Mech. Anal. 176, 227-269 (2005) [Postprint version]
  18. K. Bhattacharya and A. Schlömerkemper, Transformation Yield Surface of Shape-Memory Alloys, J. Phys. IV France 115, 155-162 (2004) [Published version]
  19. S. Müller and A. Schlömerkemper, Discrete-to-continuum limit of magnetic forces, C. R. Acad. Sci. Paris, Ser. I 335, 393-398 (2002) [Postprint version © 2002. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.]
  20. M. Requardt and A. Schlömerkemper, Perturbation theory of Schrödinger operators in infinitely many coupling parameters, J. Phys. A: Math. Gen. 32 (1999), 7523-7541 [arXiv math-ph/9901021]