English Intern
Wissenschaftliches Rechnen

Workshop "Schnelle Löser für die Simulation, Inversion und Kontrolle von Wellenausbreitungsproblemen"

Datum: 26.09.2011, 09:00 - 28.09.2011, 17:00 Uhr
Kategorie: Veranstaltung
Veranstalter: Lehrstuhl für Mathematik IX (Wissenschaftliches Rechnen)

ESF OPTPDE Workshop in Würzburg vom 26. - 28. September 2011

Dieser Workshop zielt darauf ab, die Entwicklung und Anwendung schneller Berechnungstechniken bei direkten und inversen Wellenproblemen zu fördern, die in strategischen Wissenschafts- und Ingenieurbereichen von grundlegender Bedeutung sind. Der ESFWaves-Workshop wird auch ein Forum für Forscher bieten, um die jüngsten Fortschritte bei der Modellierung und Annäherung von Wellenphänomenen und bei der Formulierung von Kontroll- und inversen Problemen zu diskutieren, die durch zeitabhängige und stehende Wellengleichungen wie Maxwell- und Helmholtzgleichungen geregelt werden.

Bild: © Stefanie Panitz

Organisation

TeilnehmerInnen

Roman Anreev ETH Zürich, CH  
Anton Arnold TU Vienna, AT Asymptotically correct finite difference schemes for highly oscillatory ODEs
Daniele Boffi Università di Pavia, IT Exterior calculus and the finite element approximation of Maxwell's eigenvalue problem
Mike Botchev University of Twente, NL Krylov-subspace exponential time integration in the time-domain electromagnetic modeling
Bair Budaev University of California, US Probability and backscattering
Siegfried Cools University Antwerp, BE  
Matthias Ehrhardt Bergische Universität Wuppertal, DE Numerical Simulation of Periodic Structure Problems
Mohamed El Bouajaji INRIA, Sophia Antipolis Cedex, FR Optimized Schwarz algorithms for the time harmonic Maxwell equations discretized by a discontinuous Galerkin method
Maurizio Falcone Sapienza Università di Roma, IT From sand piles to dunes
Francisco Gaspar Universidad de Zaragoza, ES About an analysis of the Full Multigrid Method and its practical utility  
Omar Ghattas University of Texas at Austin, US Hessian-based reduction for large-scale statistical inverse wave propagation
Sergio Gonzalez Andrade Escuela Politecninca Nacional de Quito, ECUADOR  
Marcus Grote Universität Basel, CH Interior-Point Method for Time-Harmonic Inverse Medium Problems
Eldad Haber University of British Columbia., USA Towards waveform inversion
Sean Hardesty Rice University, USA Optimization of Shell Structure Acoustics
Christian Klingenberg Universität Würzburg, DE Stable numerical simulations of strong shock waves in magnetohydrodynamics
Axel Kröner TU München, DE  
Domenico Lahaye TU Delft, NL Towards Multiscale Imaging Using the Manifold Mapping Technique
Ira Livshits Ball State University, Muncie, US Adaptive Algebraic Multigrid method for solving indefinite Helmholtz equations
Scott MacLachlan Tufts University, USA A reformulation-based approach for multigrid solution of the Helmholtz equation
Roberta Mancini Universität Konstanz, DE A POD-model reduction on a time-domain electromagnetic inverse scattering problem
Wim Mulder TU Delft, NL Seismic inversion through focusing
Innocenzo Pinto Universita' del Sannio, IT Hunting Gravitational Waves
Bram Reps University Antwerp, BE  
Carmen Rodrigo Universidad de Zaragoza, ES  
Stephan Schmidt Universität Trier, DE Shape Optimization of Acoustic Horns
Georg Stadler ICES Texas Austin, US High-order discontinuous Galerkin-based 3D seismic inversion
Jari Toivanen University of Stanford, US A Hybrid Discontinuous Galerkin Method with Plane Waves for Helmholtz Problems and a Domain Decomposition Method
Stefan Ulbrich TU Darmstadt, DE Optimal Control of Discontinuous Solutions of Hyperbolic Conservation Laws: Theory and Numerical Approximation
Wim Vanroose University Antwerp, BE Analysis of Multigrid Preconditioner for Helmholtz equation with absorbing boundary conditions.
Xavier Vasseur CERFACS, Toulouse, FR An approximate two-level preconditioner combined with flexible Krylov subspace methods for the solution of heterogeneous Helmholtz problems on massively parallel computers
Kees Vuik TU Delft, NL Analysis of the multi-level, shifted Laplace preconditioned method for the Helmholtz equation
Elena Zhebel Shell Solving the 3D acoustic wave equation with explicit discontinuous Galerkin and continuous finite element methods
Zhao Jing TU Delft, NL  

Zurück